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1 Motivation and definition

Let us recall the classical picture which is at the basis of integrability. First, we are given a real phase
space M of dimension 2n, which we assume for simplicity to admit global Darboux coordinates in
terms of n positions q and n momenta p. In convenient situations, we may be able to split M with
respect to these two sets of coordinates as M ' Mq ×Mp. Then, we are also given a Hamiltonian
H(p, q) ∈ C∞(M), which could take the suitable form

H =
1

2

n∑
j=1

p2j + V , V = V (q) ∈ C∞(Mq) . (1.1)

Finally, we have a canonically defined Poisson bracket which allows us to consider the following
equations of motion :

df

dt
= {f,H} , (1.2)

for any function f ∈ C∞(M) whose evolution we are interested in studying.

The quantum picture that we are going to introduce is motivated by quantum mechanics, and
we need to reinterpret the classical construction. We are still considering the space Mq where we
can measure positions, but quantum mechanics now tells us that we should be interested in the
probability of finding a given system in a particular configuration. We are led to consider a complex
Hilbert space S of states ψ depending on Mq, for example the Hilbert space L2(Rn, dq) of complex-
valued square-integrable functions on Mq = Rn. What will be important from the point of view of
physics is to consider the set S1 of states of unit norm, such as the unit-length vectors in L2(Rn, dq),
which can be used to compute the probability of finding a particular system in a region of Mq or
to make “measurements”. To be more precise, let us introduce an algebra A of operators, called
observables, acting on S. Given an element F ∈ A, we can compute the expectation value of F in
a state ψ ∈ S1 which is given by

Eψ[F ] := 〈ψ,Fψ〉 , (1.3)

where 〈−,−〉 denotes the inner product on S.
A state will evolve over time according to Schrödinger’s equation :

i~
∂ψ

∂t
= − ~2

2m
∆ψ + V ψ , V = V (q) ∈ C∞(Mq) . (1.4)

Here, we use the Laplacian ∆f =
∑n

j=1 ∂
2f/∂q2j for f ∈ C∞(Mq), while ~ is the Planck constant.

From a more modest point of view, these considerations lead us to the problem of solving (1.4) with
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m = 1 and ~ being seen as a formal parameter, from which we get the following simplified version

i~
∂ψ

∂t
= Hψ , H =

1

2

n∑
j=1

(
−i~

∂

∂qj

)2

+ V . (1.5)

The element H, called the quantum Hamiltonian, is an element of the algebra A of operators acting
on S.

If the operator H is time-independent, we can formally solve (1.5) by introducing the one-
parameter group of operators

U(t) = exp

(
− i

~
tH
)
, t ∈ R . (1.6)

It suffices to note that i~∂U(t)∂t = U(t)H = HU(t), in order to get the solution ψ(t) = U(t)ψ(0)
for the initial condition ψ(0). Furthermore, we can use U to obtain the evolution of an observable
F ∈ A. Mathematically, we note that1

Eψ(t)[F ] = 〈ψ(t),Fψ(t)〉 = 〈ψ(0), (U(t)−1FU(t))ψ(0)〉 = Eψ(0)[F(t)] , (1.7)

for the one-parameter group of operators F(t) = U(t)−1FU(t). This can be reformulated as saying
that the expectation value of the observable F in the state ψ(t) coincides with the expectation
value of the evolution operator F(t) in the initial state ψ(0). We obtain in that way the Heisenberg
picture of dynamics for observables

dF(t)

dt
=
−i

~
[F(t),H] , H =

1

2

n∑
j=1

(
−i~

∂

∂qj

)2

+ V , (1.8)

where [−,−] denotes the commutator [A,B] = AB −BA.
The classical (1.2) and quantum (1.8) equations of motion are quite similar. The role of the Pois-

son bracket {−,−} is now played by the (rescaled) commutator, and both operations are bideriva-
tions. Comparing the quantum Hamiltonian H in (1.5) with its classical counterpart (1.1) suggests
that each momentum pj has its role now being played by the derivation −i~∂/∂qj . Hence we are
“replacing” the Poisson algebra C∞(M) by the algebra of operators A acting on S. Put together,
we can give a rough correspondence between the classical and the quantum settings as in Table 1.

In order to understand what is the analogue of an integrable system in the quantum case, let us
try to solve (1.5) by decomposing this equation with respect to an eigenbasis for H of normalised
eigenfunctions (φ`) corresponding to a discrete set of complex2 eigenvalues (E`), i.e.

φ` ∈ S1 is such that Hφ` = E`φ` . (1.9)

Then the evolution of some state ψ(q, 0) comes from its decomposition as ψ(q, 0) =
∑

` c`φ`(q) for
some constants (c`). Indeed, it is simply given by

ψ(q, t) =
∑
`

c` e
−iE`t/~φ`(q) . (1.10)

1Here we require that H is a self-adjoint operator, which means that 〈Hφ, ψ〉 = 〈φ,Hψ〉 holds for all φ, ψ ∈ S.
This implies that U(t) is unitary, that is 〈U(t)φ, ψ〉 = 〈φ,U(t)−1ψ〉.

2The eigenvalues are real if H is self-adjoint.
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Classical Quantum

Poisson algebra of functions C∞(M) A Algebra of operators
Classical Hamiltonian H H Quantum Hamiltonian

Poisson bracket {−,−} −i
~ [−,−] Commutator

Classical equation of motion df
dt = {f,H} dF

dt = −i
~ [F ,H] Heisenberg equation

Table 1: correspondence between classical and quantum notions.

So now the question reduces to find an eigenbasis for H. By definition, an operator F ∈ A
commutes with H if

[F ,H] = FH−HF = 0 . (1.11)

The key remark is to realise that if F commutes with H, then

HFφ` = FHφ` = E`Fφ` , (1.12)

so that Fφ` is itself an eigenvector of H of eigenvalue E`. Therefore, we can consider the more
precise problem of finding a common normalised eigenbasis of H and F , that is we want

φ` ∈ S1 such that Hφ` = E`φ`, Fφ` = E′`φ`, E`, E
′
` ∈ C . (1.13)

This strategy can be repeated with an operator commuting with both H and F , then a fourth
operator commuting with the first three ones, and so on and so forth. But when should we stop?
In the classical case, we limited our choice of Poisson commuting elements to n = 1

2 dim(M) =
dim(Mq) functions which are functionally independent, so we shall introduce a similar property of
independence.

Definition 1.1. A set of operators H1, . . . ,Hn ∈ A is a quantum (completely) integrable system if
these operators pairwise commute (i.e. [Hi,Hj ] = 0 for all 1 ≤ i, j ≤ n) and there exists no relation
between them.

A word of warning here : the existence of a relation usually means that we can write the identity

P (H1, . . . ,Hn) = 0 , (1.14)

for some nonzero polynomial P ∈ C[z1, . . . , zn] in n variables. (Since the operators (Hi) pair-
wise commute, replacing the variables (zi) by them yields a well-defined operator.) Depending
on the context, P may have a slightly different form, e.g. we could seek independence over real-
algebraic/analytic functions in n variables. As an example, note that for i 6= j there exists a relation
between the three commuting operators F1 = ∂2/∂q2i , F2 = ∂2/∂q2j , and F3 = ∂/∂qi + ∂/∂qj , since

for P (z1, z2, z3) = (z23 − z1 − z2)2 − 4z1z2 , we have P (F1,F2,F3) = 0 . (1.15)

There is a widespread use of a more convenient definition of quantum integrability which is
motivated by the classical case, and it has the advantage of getting the independence of the operators
“for free”. This is based on the method of deformation/quantization. The quantization process
consists in making the formal replacement

pj  −i~
∂

∂qj
, (1.16)
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to go from a polynomial function on M to an operator belonging to A. There is an obvious issue
of ordering here, since the function qjpj can be quantized in the many forms

αqjpj + (1− α)pjqj  −αi~qj
∂

∂qj
− (1− α)i~

∂

∂qj
qj = −i~qj

∂

∂qj
+ (α− 1)i~ , α ∈ C .

Nevertheless, it is well-defined for the Hamiltonian operators of interest since

H =
1

2

n∑
j=1

p2j + V (q)  H =
1

2

n∑
j=1

(
−i~

∂

∂qj

)2

+ V (q) . (1.17)

The “opposite” of the map (1.16) is given by the replacement

− i~
∂

∂qj
 pj , then ~ → 0 , (1.18)

and it is called the reduction. For example, H is the reduction of H in (1.17). Note that performing
quantization (1.16) then reduction (1.18) returns the original function, but the opposite may not
be true. With this set up, we have the following alternative definition of quantum integrability.

Definition 1.2 (Alternative to Definition 1.1). A set of operators H1, . . . ,Hn ∈ A is a quan-
tum (completely) integrable system if these operators pairwise commute ([Hi,Hj ] = 0) and their
reductions H1, . . . ,Hn are functionally independent.

2 Examples of quantum integrable systems

Remark 2.1. To ease notations when dealing with examples, it is usual to fix ~ to some value in
C \ {0}. In our examples, we will work with ~ = −i so that the Hamiltonian operators are of the

form H = 1
2

∑n
j=1

∂2

∂q2j
+ V , and quantization is just pj  ∂

∂qj
.

2.1 The harmonic oscillator

Let us start with the Hamiltonian of the classical harmonic oscillator

H =
1

2

n∑
j=1

p2j + ω2
n∑
j=1

q2j , ω ∈ R \ {0} , (2.1)

which is defined on the space M = T ∗Rn ' Rn × Rn. The Poisson bracket is taken to be the
canonical one. We note that the Hamiltonian can be uncoupled in terms of its n = 1 subcases as

H =

n∑
j=1

hj , hj :=
1

2
p2j + ω2q2j , (2.2)

and we easily see that the n functions from h := (hj)1≤j≤n are Poisson commuting. Furthermore,
we can compute the Jacobian matrix as

Jh =

(
∂h

∂q

∂h

∂p

)
=

 2ω2q1 p1
. . .

. . .

2ω2qn pn

 . (2.3)
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It is easy to see that each diagonal n × n block submatrix of Jh is invertible on a dense subset of
the phase space M , hence the functions in h are functionally independent. It then follows that the
functions

H1 := H, H2 := h2, . . . , Hn := hn (2.4)

define an integrable system, so that the Hamiltonian H is integrable.
The quantization of the Hamiltonian (2.1) is uniquely defined and is just

H =
1

2

n∑
j=1

∂2

∂q2j
+ ω2

n∑
j=1

q2j . (2.5)

Here, we see H as an operator on the space of states S = L2(Rn, dq), which contains the square-
integrable functions defined on Rn. (To get S1, we would restrict further to the states which have
unit length.) The quantization of the functions from the integrable system (2.4) are given by

H1 := H, H2 :=
1

2

∂2

∂q22
+ ω2q22, . . . , Hn :=

1

2

∂2

∂q2n
+ ω2q2n , (2.6)

and it is straightforward to see that such operators pairwise commute. If we are back to our
original problem of finding solutions to the Schrödinger’s equation (1.4), recall that we want to find
a common eigenbasis of the operators (2.6). The quantum integrable system tells us that we have
to look at the solutions of the n = 1 cases(

1

2

∂2

∂q2j
+ ω2q2j

)
φ`(qj) = E`,jφ`(qj) , ` ∈ N , (2.7)

which can be expressed using Hermite polynomials, see Exercise 3.3. Thus, we can use these
functions to build eigenfunctions of H such as

φλ(q) := φ`1(q1) . . . φ`n(qn) , λ = (`1, . . . , `n) ∈ Nn . (2.8)

2.2 A Lax pair for the Calogero-Moser system

We begin with a system describing the motion of n interacting particles on the real line with
positions (qj). The system would have the general form

H =
1

2

n∑
j=1

p2j +
∑

1≤j<k≤n
V (qk − qj) , (2.9)

for some potential function V . We will be interested in the case of the rational potential

V (x) = g2
1

x2
, g > 0 , (2.10)

which is associated to an important integrable system, called the Calogero-Moser system. (Note
that it admits several generalisations that bear the same name but which will not be presented in
these introductory notes.) As a first step towards this system, let us note the observation made by
Moser that if we consider the matrices

L ∈ Matn×n(C) , Ljj = pj , Ljk =
ig

qj − qk
, j 6= k , (2.11a)

M ∈ Matn×n(C) , Mjj =
∑
k 6=j

ig

(qj − qk)2
, Mjk =

−ig

(qj − qk)2
, j 6= k , (2.11b)
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then we have in fact a Lax pair. To see this property, we consider the Hamiltonian vector field
d
dt = 1

2{−, trL
2}, and we remark that we can write

dL

dt
= [L,M ] . (2.12)

This is a matrix identity, i.e. dLjk/dt = (LM)jk − (ML)jk for all j, k, which can be checked in
Exercise 3.4. As we learnt in Lecture 1, having a Lax pair guarantees that the functions

H1 = trL, H2 =
1

2
trL2, . . . , Hn =

1

n
trLn, (2.13)

are first integrals of

HCM := H2 =
1

2

n∑
j=1

p2j +
∑

1≤j<k≤n

g2

(qj − qk)2
. (2.14)

The function HCM has the form (2.9) and it is the Hamiltonian of the Calogero-Moser system.
We can build an integrable system by considering the functions (2.13), and we will sketch two

ways to derive this result in the next subsection. For later use, let us note that the matrix L from
(2.11a) is a Hermitian matrix, i.e. L̄kj = Ljk. If we introduce

Q ∈ Matn×n(C) , Q = diag(q1, . . . , qn) , (2.15)

which is also Hermitian, the pair (Q,L) satisfies

QL− LQ = −ig(Idn−vv†) , v = (1, . . . , 1)T . (2.16)

(Here A† denotes the conjugate transpose of a matrix A. In the simple case at hand v† = (1, . . . , 1).)

To get a quantum version of the Calogero-Moser system, let us first look at the Hamiltonian
(2.14). Its quantization under (1.16) is unique, and it can be written as

HCM =
1

2

n∑
j=1

∂2

∂q2j
+

∑
1≤j<k≤n

g2

(qj − qk)2
. (2.17)

In order to find a family of commuting operators containing HCM , let us simply quantize the Lax
pair (L,M). This can be done uniquely using the matrix-valued operators (L,M) defined by

Ljj =
∂

∂qj
, Ljk =

ia

qj − qk
, j 6= k , (2.18a)

Mjj =
∑
k 6=j

ia

(qj − qk)2
, Mjk =

−ia

(qj − qk)2
, j 6= k . (2.18b)

Note that we introduce a constant a ∈ C× in those expressions satisfying g2 = a2− ia3. Let us also
remark that the functions appearing in these matrices are seen as operators, so for example

∂

∂qj
Ljk = Ljk

∂

∂qj
− ia

(qj − qk)2
,

3This odd-looking condition is due to our choice for ~ made in Remark 2.1. In full generalities, we replace ia by ig
and −ia by ~g in L and M respectively. Then the role of the element a2 − ia will be played by g(g + ~) which tends
to g2 for ~→ 0.
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because this identity holds when applied to a function by the chain rule. We can then use the pair
(2.18a)–(2.18b) to note that under the derivation d

dt = [HCM ,−], we can write

dL
dt

= [L,M] , (2.19)

which looks similar to (2.12). Let us dissect (2.19), which is an identity of matrix-valued operators.
On one side, the (j, k) entry is given by the commutator of operators [HCM ,Ljk], while on the other
side we have the entry

∑n
s=1(LjsMsk −MjsLks) of a commutator of matrices.

We can now use (2.19) to find first integrals of HCM . A first attempt based on the classical case
is to look at traces of powers of L, and we find

d trLm

dt
=

m−1∑
µ=0

tr

(
Lµ dL

dt
Lm−µ−1

)
= tr([Lm,M]) , m ≥ 1 . (2.20)

Unfortunately, this does not necessarily vanish : we are in presence of operators so that tr(LmM) 6=
tr(MLm) in general. So we can not simply use traces of powers of the quantum Lax matrix L
(2.18a) as operators commuting with HCM . To be successful, we need in fact to reformulate the
first integrals found in the classical case. Namely, we note in view of (2.16) that

0 = tr ((QL− LQ)Lm) = −ig tr
(

(Idn−vv†)Lm
)
, v = (1, . . . , 1)T , (2.21)

and we can write in particular

H1 = v†Lv, H2 =
1

2
v†L2v, . . . , Hn =

1

n
v†Lnv. (2.22)

Trying these alternative forms in the quantum case, we have

dv†Lmv
dt

= v†[Lm,M]v =

n∑
i,j,k=1

LmijMjk −
n∑

i,j,k=1

MijLmjk . (2.23)

We now observe that this expression vanishes in view of the identities

n∑
k=1

Mjk = 0 =

n∑
k=1

Mkj , for all j = 1, . . . , n . (2.24)

As a corollary, the operators

H1 = v†Lv, H2 =
1

2
v†L2v, . . . , Hn =

1

n
v†Lnv , (2.25)

are all commuting with HCM , which is in fact equal to H2. Furthermore, it can be shown that these
operators are pairwise commuting, and we will prove this result in § 2.3.3. Their independence
follows from the classical case since the reduction of the matrix L (2.18a) is given by the matrix
L (2.11a) from the classical case. (We refer to Footnote 3 for the precise way to reintroduce ~, so
that we can take the limit ~→ 0 in the reduction.)
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2.3 More on the Calogero-Moser system

2.3.1 Hamiltonian reduction

Note that if L from (2.11a) can be diagonalised into L̃ which has distinct eigenvalues, then we can
choose a unitary matrix U ∈ U(n) such that L = U−1L̃U and Uv = v for v = (1, . . . , 1)T , see
Exercise 3.7. The pair

(Q̃, L̃) = (UQU−1, ULU−1) (2.26)

satisfies (2.16), and as a corollary we can write their entries as

L̃jk = δjkp̃j , Q̃jk = δjkq̃j + (1− δjk)
−ig

p̃j − p̃k
, (2.27)

for some (q̃j , p̃j) which are another set of coordinates. By invariance of the trace, we obtain in those
coordinates that

H1 = tr L̃ =
∑

1≤j≤n
p̃j , . . . , Hn =

1

n
tr L̃n =

1

n

∑
1≤j≤n

p̃nj . (2.28)

The independence of those functions is obtained as follows : their Jacobian matrix taken with respect
to the coordinates (p̃j) is the Vandermonde matrix V = (Vjk), Vjk = q̃j−1k , whose determinant is
nonzero whenever the (p̃j) are pairwise distinct. In fact, it is possible to compute that the Poisson
bracket of these alternative coordinates is given by

{q̃j , q̃k} = 0 = {p̃j , p̃k} , {q̃j , p̃k} = δjk , (2.29)

hence the functions (2.13) are trivially Poisson commuting, and thus form an integrable system.
What we have sketched is a rough application of Hamiltonian reduction, which is a very useful

tool within the field of integrable systems to obtain examples from spaces of matrices. In full
generalities, we start with the space N of pairs of Hermitian matrices (X,Y ), endowed with the
non-degenerate Poisson bracket defined by

{Xij , Ykl} = δkjδil , {Xij , Xkl} = 0 , {Yij , Ykl} = 0 . (2.30)

We then consider the subspace Ng obtained by imposing the (moment map) condition that the
Hermitian matrix i[X,Y ] has value in the U(n) coadjoint orbit of elements of the form −g Idn +ww†,
for w ∈ Cn nonzero. Finally, we consider the associated orbit space Ng/U(n). We can see that if X
(resp. Y ) is diagonalisable with distinct eigenvalues, the orbit of the pair (X,Y ) contains an element
of the form (Q,L) (resp. (Q̃, L̃)). An important byproduct of this method is that the flows of the
Hamiltonian vector field associated to 1

k trY k on N are simply given by (X0, Y0) 7→ (X0+tY k−1
0 , Y0).

We can thus understand the (reduced) flows under Hk in terms of the element (qj , pj) by projection
of the flows from N onto Ng/U(n), in which we select an element of the orbit in the form (Q,L).

2.3.2 Integrability from an r-matrix

Let us introduce for any 1 ≤ i, j ≤ n the elementary matrix Eij whose only nonzero entry is given
by +1 in position (i, j). Then, we can write an arbitrary matrix as A =

∑
j,k Ajk Ejk. For example,

the Lax matrix L from (2.11a) takes the simple form

L =

n∑
j=1

pjEjj +
∑
j 6=k

ig

qj − qk
Ejk . (2.31)
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In the same way, we can decompose a tensor product of matrices as

r =
n∑

ijkl=1

rij,klEij ⊗ Ekl . (2.32)

(We consider unadorned tensor products over C.) If we are given an element r of the form (2.32),
it is a standard notation to denote r12 = r, and we introduce the following element obtained by
permuting the two copies in the tensor product :

r21 =

n∑
ijkl=1

rij,klEkl ⊗ Eij . (2.33)

Next, let us see an arbitrary matrix A as an element of the form (2.32) in two different ways:

A1 = A⊗ Idn =

n∑
ijkl=1

AijδklEij ⊗ Ekl , A2 = Idn⊗A =

n∑
ijkl=1

δijAklEij ⊗ Ekl . (2.34)

Finally, if two matrices A,B are seen as functions over a phase space endowed with a Poisson
bracket, we introduce the notation

{A1
⊗, B2} =

n∑
ijkl=1

{Aij , Bkl}Eij ⊗ Ekl . (2.35)

We are now able to state a strong result, due to Babelon and Viallet. A matrix L defined over
a phase space is such that its symmetric functions (trLk) are all pairwise commuting, if and only
if there exists some element r of the form (2.32) such that4

{L1
⊗, L2} = [r12, L1]− [r21, L2] . (2.36)

Let us prove the “only if” part. We will use the notation tr2 to mean that we take the trace with
respect to the second factor in the tensor product for an expression of the form (2.32). We first
note that for any m ≥ 1,

1

m
{L, tr(Lm)} =

∑
ijkl

{Lij , Lkl}Lm−1lk Eij = tr2

(
{Lij ⊗, L2}Lm−12

)
. (2.37)

Upon substituting (2.36), we find

1

m
{L, tr(Lm)} = tr2

(
[r12, L1]L

m−1
2

)
− tr2

(
r21L

m
2 − Lm−12 r21L2

)
, (2.38)

and the second term vanishes by cyclicity of the trace. If we note that Mm = − tr2

(
r12L

m−1
2

)
is a

matrix, we have
1

m
{L, tr(Lm)} = [L,Mm] . (2.39)

In other words, we have a Lax pair (L,Mm) for the Hamiltonian vector field associated to each
function 1

m tr(Lm), hence these functions are all Poisson commuting. The upshot of this discussion

4Here, [−,−] is simply the commutator of matrices. In particular [A′⊗A′′, B′⊗B′′] = A′B′⊗A′′B′′−B′A′⊗B′′A′′.
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is that we can use the result of Babelon and Viallet in the case of the Calogero-Moser system.
Indeed, if we introduce

r12 = a12 + b12 , a12 =
∑
i 6=j

1

qi − qj
Eij ⊗ Eji , b12 =

∑
i 6=j

1

qi − qj
Eii ⊗ Eij , (2.40)

then the matrix L from (2.11a) and the element r12 from (2.40) satisfy (2.36), see Exercise 3.8. In
particular, the different functions in (2.13) are Poisson commuting, as we expected.

Let us now turn to a simple question : what is so special about the matrix r given in (2.40), or
more generally such a matrix satisfying (2.36)? The answer lies in writing Jacobi identity in tensor
notations. If we work with a tensor product of three copies of the algebra of matrix-valued functions,
an element r of the form (2.32) can be extended as r12 = r ⊗ Idn, and we can also introduce

r13 =
n∑

ijkl=1

rij,klEij ⊗ Idn⊗Ekl , r23 =
n∑

ijkl=1

rij,kl Idn⊗Eij ⊗ Ekl , (2.41)

or define r21, r31, r32 in the same way. Given a matrix L, we introduce L1 = L⊗ Idn⊗ Idn and then
define L2, L3 in a similar way. A key property of (2.36) is that Jacobi identity written as

{L1
⊗, {L2

⊗, L3}} + cyclic permutations = 0 , (2.42)

can be recast as

[L1, [r12, r13] + [r12, r23] + [r32, r13] + {L2
⊗, r13} − {L3

⊗, r12}] + cyc. perm. = 0 . (2.43)

Therefore, if we attempt to classify all the pairs (L, r) such that (2.36) holds, we are also interested
in this auxiliary identity. If r is a constant (which is not the case for (2.40)), we can get a solution
to (2.43) in the simpler situation where

[r12, r13] + [r12, r23] + [r32, r13] = 0 . (2.44)

This identity is called the classical Yang-Baxter equation5. We call a solution of (2.44) an r-matrix,
and from our discussion we see that r-matrices can be particularly interesting to study.

We will not adapt the above approach to the quantum setting, as it would become rather
involved. Let us simply mention that the quantum version of (2.44) is written as

R12R13R23 = R23R13R12 , (2.45)

and is called the quantum Yang-Baxter equation. If we can expand a solution R of the quantum
Yang-Baxter equation as R = Idn−~r + o(~2), then the linear part r will satisfy (2.44). Such
solutions have a deep connection to quantum groups and to various versions of integrability in the
quantum setting, which will not be touched as part of this lecture series.

2.3.3 The quantum first integrals commute

We have obtained that the operators Hk defined in (2.25) are commuting with the Calogero-Moser
operator HCM = H2 thanks to the Lax pair (2.19). We can also show that these operators commute
with H1 =

∑
j

∂
∂qj

in view of the simple equality

[H1,L] = 0 . (2.46)

5It is also usual to keep that name for an element r satisfying the antisymmetry property r12 = −r21.
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To prove the identity [Hk,Hm] = 0 for arbitrary k,m ≥ 1, there is still some work to do. First, we
compute the third Hamiltonian operator

H3 =
1

3

n∑
j=1

∂3

∂q3j
+
g2

3

n∑
k,j=1

k 6=j

[
∂

∂qj

1

(qj − qk)2
+

1

(qj − qk)
∂

∂qk

1

(qj − qk)
+

1

(qj − qk)2
∂

∂qj

]
. (2.47)

(Here, we used that g2 = a2 − ia.) This identity allows us to prove that

[H3,L] = [L,M(3)] , (2.48a)

where M(3)
jk = (1− δjk)Njk − δjk

∑
l 6=j
Njl , (2.48b)

with Njk :=
−ia

(qj − qk)2

(
∂

∂qj
+

∂

∂qk

)
+ a2

∑
l 6=j,k

1

(qj − ql)(ql − qk)(qj − qk)
, j 6= k . (2.48c)

We directly get
∑

kM
(3)
jk = 0 for any j, and after a bit of manipulations we can also find that∑

jM
(3)
jk = 0. We then deduce from these two identities and (2.48a) that [H3,Hm] = 0 for all

m ≥ 1, see Exercise 3.14. Hence, we have been able to prove that when k = 1, 2, 3,

[Hk,Hm] = 0 for all m ≥ 1 . (2.49)

We now proceed to obtain this result for arbitrary k by induction. To this end, we introduce the
operator

J2 =
1

2

n∑
j=1

[q2j ,H3] , (2.50)

which satisfies the identity

[J2,Hm] = (m+ 1)Hm+1 , for m ≥ 1 . (2.51)

We will check (2.51) shortly, but before that let us derive the long-awaited result of commutativity of
the operators (Hk). Assuming that (2.49) holds for some k (which we already know for k = 1, 2, 3),
we use (2.50) and Jacobi identity for the commutator to get[

Hk+1,Hm
]

=
1

k + 1
[[J2,Hk],Hm] =

−1

k + 1
([[Hm,J2],Hk] + [[Hk,Hm],J2])

=
m+ 1

k + 1
[Hm+1,Hk]−

1

k + 1
[[Hk,Hm],J2] .

(2.52)

By the inductive hypothesis, [Hm+1,Hk] = 0 = [Hk,Hm] so that [Hk+1,Hm] = 0 for any m ≥ 1.
Hence we get [Hk,Hm] = 0 for all indices, which proves that the operators (2.25) commute.

We now turn to prove (2.51), which relies on the Lax pair (L,M(3)) that we derived in (2.48).
Since we got from (2.48) that [H3,Hm] = 0 for any m ≥ 1, Jacobi identity yields

[J2,Hm] =
1

2

n∑
j=1

[[q2j ,H3],Hm] = −1

2

n∑
j=1

[[Hm, q2j ],H3] . (2.53)
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Noting that [Lkl, qj ] = δklδkj , we can write

[
J2,Hm

]
=
−1

2m

m−1∑
µ=0

∑
jklk′l′

[
(Lµ)kk′ [Lk′l′ , q2j ](Lm−µ−1)l′l,H3

]
=
−1

m

m−1∑
µ=0

∑
jkl

[(Lµ)kjqj(Lm−µ−1)jl,H3] .

(2.54)

In view of (2.48a) and the fact that the commutator satisfies Leibniz’s rule, we get for any s ≥ 1
the identity [Ls,H3] = [M(3),Ls]. Thus

[
J2,Hm

]
=
−1

m

m−1∑
µ=0

∑
jkl

([M(3),Lµ])kjqj(Lm−µ−1)jl

+
−1

m

m−1∑
µ=0

∑
jkl

(Lµ)kj [qj ,H3](Lm−µ−1)jl

+
−1

m

m−1∑
µ=0

∑
jkl

(Lµ)kjqj([M(3),Lm−µ−1])jl .

(2.55)

But
∑

kM
(3)
jk = 0 and

∑
jM

(3)
jk = 0 (see Exercise 3.14), so this can be written as

[
J2,Hm

]
=

1

m

m−1∑
µ=0

∑
jj′kl

(Lµ)kj

(
(M(3))jj′qj′ − qj(M(3))jj′

)
(Lm−µ−1)j′l

+
−1

m

m−1∑
µ=0

∑
jkl

(Lµ)kj [qj ,H3](Lm−µ−1)jl .

(2.56)

To simplify these expressions, let us note the identity

M(3)
jk qk − qjM

(3)
jk = (L2)jk + δjk[qj ,H3] , (2.57)

which is left as Exercise 3.15. We get

[
J2,Hm

]
=

1

m

m−1∑
µ=0

∑
kl

(Lm+1)kl = (m+ 1)Hm+1 , (2.58)

as we claimed.

3 Other remarks

3.1 Brief bibliography

A physical motivation for quantum mechanics and Schrödinger’s equation can be found in [9, § 16.5].
A mathematical point of view can be found in [13, 14]. An introduction to quantum integrability
can be found in [8, § 5.1-5.2] and [12, § 4.1]. We refer to [7] for a discussion on different notions of
quantum integrability.
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The harmonic oscillator is a particularly nice toy model described in many books. Let us mention
[1, Example 4.33] for a construction of the action-angle coordinates of the classical system, and [14,
§ 2.6] for a rigorous derivation of the eigenfunctions of the quantum system.

The Calogero-Moser system was originally introduced as a quantum system by Calogero [6].
Its classical integrability was proved by Moser [11] who exhibited the Lax pair that we used. The
change of coordinates that allowed us to prove Liouville integrability of the system in §2.3.1 was
observed by Kazhdan, Kostant and Sternberg [10]. The particular r-matrices that we have used in
§2.3.2 come from [3, 5]. For more on the use of r-matrices for integrable systems, we refer to [2, 4].

For the integrability of the quantum Calogero-Moser system, we have followed the argument
of Ujino, Hikami and Wadati [15, 16]. We refer to [2, § 3.3-3.4] for more details on the use of
quantum Lax pairs and R-matrices for Calogero-Moser systems, as well as for the construction of
their eigenfunctions. A different method to prove the quantum integrability of the system consists
in using Dunkl operators, see [8, § 6].

3.2 Exercises

Exercise 3.1. Check the dependence relation in (1.15) by proving that it vanishes when applied to
a function. Can you find other polynomials P such that P (F1,F2,F3) = 0?

Exercise 3.2. Check that the functions (hi) given in (2.2) are Poisson commuting under the canon-
ical Poisson bracket {qi, pj} = δij, {qi, qj} = 0 = {pi, pj}.
Furthermore, check that the corresponding operators (Hi) given in (2.6) are pairwise commuting.

Exercise 3.3. In this exercise, we formally build eigenfunctions and eigenvalues6 for the operator
H = 1

2
d2

dq2
+ ω2q2.

a) Assume that the function

φ(q) = exp

(
iωq2√

2

)
P (q)

is an eigenfunction of H for some polynomial P (q) and eigenvalue E. Show that the polynomial
P (q) satisfies

d2y

dq2
+ 2
√

2iωq
dy

dq
+ 2

(
iω√

2
− E

)
y = 0 .

b) Show that for any n ≥ 0, the Hermite polynomial

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

satisfies Hermite’s equation y′′ − 2xy′ + 2λy = 0 with λ = n.

c) Deduce that the following pairs are eigenfunctions and eigenvalues of H for each n ≥ 0

φn = exp

(
iωq2√

2

)
Hn

(√
−i
√

2ω q

)
, En = i

√
2ω

(
n+

1

2

)
.

Exercise 3.4. Prove that the classical Lax equation (2.12) for the Calogero-Moser system is satis-
fied.

6The eigenfunctions and eigenvalues that we obtain differ from those in most textbooks due to our choice of ~
made in Remark 2.1. Reintroducing ~ and taking it to be positive, we get real eigenfunctions with real eigenvalues
for the corresponding self-adjoint operator.
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Exercise 3.5. Verify that the Calogero-Moser Hamiltonian HCM (2.14) is 1
2 trL2.

Exercise 3.6. Verify that the pairs (Q,L) and (Q̃, L̃) satisfy (2.16).

Exercise 3.7. Let U ∈ U(n) be a matrix diagonalising L (2.11a). By conjugating (2.16) with U
and looking at the diagonal entries of this identity, show that Uv can not have an entry equal to
zero. Deduce that we can find such a U satisfying Uv = v.

Exercise 3.8. Show that the Lax matrix L from (2.11a) and the element r12 from (2.40) are such
that they satisfy (2.36) if the space is endowed with the Poisson bracket {qi, pj} = δij, {qi, qj} =
0 = {pi, pj}.
Hint: Prove the identity at each entry (ij, kl) by showing that

{L1
⊗, L2}ij,kl =− ig(δil − δkj)

[
δijδ(k 6=l)

(qk − ql)2
+

δklδ(i 6=j)

(qi − qj)2

]
,

[a12, L1]ij,kl =ig
δilδ(k 6=l)δ(k 6=j)

(qj − qk)(qk − ql)
− ig

δkjδ(k 6=l)δ(i 6=l)

(qi − ql)(ql − qk)
,

−[a21, L2]ij,kl =ig
δilδ(i 6=j)δ(k 6=j)

(qk − qj)(qj − qi)
− ig

δkjδ(i 6=j)δ(i 6=l)

(ql − qi)(qi − qj)
,

[b12, L1]ij,kl − [b21, L2]ij,kl =ig
δ(i 6=j)δ(k 6=l)

(qi − qj)(qk − ql)
(δil − δjk) ,

where δ(j 6=k) = 1− δjk equals +1 if j 6= k and 0 when j = k.

Exercise 3.9. Similarly to the previous exercise, show that the Lax matrix L from (2.11a) and the
element r̃12 given by

r̃12 =
∑
i 6=j

1

qi − qj
Eij ⊗ Eji +

1

2

∑
i 6=j

1

qi − qj
Eii ⊗ (Eij − Eji) ,

are such that they satisfy (2.36). Deduce that whenever you are given a pair (L, r) satisfying (2.36),
then r is not uniquely determined.

Exercise 3.10. Check that Jacobi identity (2.42) is equivalent to (2.43) under (2.36).

Exercise 3.11. Prove that the quantum Lax equation (2.19) for the Calogero-Moser system is
satisfied.
Hint: the diagonal entry (k, k) and the off-diagonal entry (j, k) are respectively given by

−2
∑
s 6=k

a2 − ia

(qs − qk)3
, and

ia

(qj − qk)2

(
2

qj − qk
+

∂

∂qk
− ∂

∂qj

)
.

Exercise 3.12. Verify that the quantum Calogero-Moser Hamiltonian (2.17) coincides with H2

defined in (2.25).
Hint: show the identity ∑

1≤j≤n

∑
1≤k≤n

k 6=j

∑
1≤s≤n

s 6=j,k

1

(qs − qj)(qs − qk)
= 0 ,

by rewriting the sums over indices 1 ≤ a < b < c ≤ n.

Exercise 3.13. We prove that [H1,Hm] = 0 for all m ≥ 1.
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a) Show that H1 =
∑

j ∂/∂qj.

b) Derive (2.46), and deduce the desired result.

Exercise 3.14. We prove that [H3,Hm] = 0 for all m ≥ 1.

a) Show that the third quantum Calogero-Moser Hamiltonian H3 is given by (2.47).

b) Derive the quantum Lax equation (2.48a).

Hint: the diagonal entry (j, j) and the off-diagonal entry (j, k) are respectively given by

(j, j) : 2g2
∑
r 6=j

1

(qj − qr)3

(
∂

∂qj
+

∂

∂qr

)
, for g2 = a2 − ia ,

(j, k) : ia

(
2

(qj − qk)3

(
∂

∂qj
+

∂

∂qk

)
− 1

(qj − qk)2

(
∂2

∂q2j
− ∂2

∂q2k

))

+ ia g2
1

(qj − qk)2
∑
r 6=j,k

(
1

(qk − qr)2
− 1

(qj − qr)2

)
.

c) Check that the matrix M(3) (2.48b) satisfies
∑

jM
(3)
jk = 0 =

∑
kM

(3)
jk .

d) Deduce the desired result.

Exercise 3.15. Prove the identity (2.57), where M(3) is given by (2.48b) and L by (2.18a).
Hint: the diagonal entry (j, j) and the off-diagonal entry (j, k) are respectively given by

(j, j) : ia
∑
l 6=j

1

(qj − ql)2
,

(j, k) :
ia

(qj − qk)

(
∂

∂qj
+

∂

∂qk

)
− ia

(qj − qk)2
− a2

∑
l 6=j,k

1

(qj − ql)(ql − qk)
.
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