# Multiplicative quiver varieties and generalised Ruijsenaars-Schneider models 

Oleg Chalykh \& Maxime Fairon

## Introduction

The Calogero-Moser system can be obtained by performing a Hamiltonian reduction on the cotangent bundle for $\mathfrak{g l}_{n}(\mathbb{C})$. One can also view this reduction as performed on the cotangent bundle for the space of representations of a one-loop quiver. Our objective is to adapt this result to the Ruijsenaars-Schneider system and its variants, while transferring as much information as possible to the algebra defined by the quiver.

## METHOD

Van den Bergh's work [3] is about translating a quasiHamiltonian reduction

$$
\begin{equation*}
\mathcal{R} e p \rightarrow \mathcal{R} e p / / G \tag{1}
\end{equation*}
$$

at the algebra level, for a Lie group action $G \curvearrowright \mathcal{R} e p$ on the representation space of an algebra. There is an explicit construction in the case of the multiplicative preprojective algebra of an arbitrary quiver.
To use this formalism, we need to define on a noncommutative algebra $A$ :

- A double quasi-Poisson bracket $\left\{\{-,-\}: A^{\otimes 2} \rightarrow A^{\otimes 2}\right.$
- A multiplicative moment map $\Phi \in A$ compatible with the double bracket
Then, we consider :
- A dimension vector $\alpha$
- An element $g_{q}$ in a Lie group $G(\alpha)$

We can form the representation space $\operatorname{Rep}(A, \alpha)$, and any element $a \in A$ becomes represented by a matrix $\mathcal{X}(a) \in \mathcal{O}(\mathcal{R e p}(A, \alpha))$. Moreover, $\mathcal{X}(\Phi)$ is $G(\alpha)$-valued. For suitable choices, $\operatorname{Rep}(A, \alpha)$ is endowed with a quasi-Hamiltonian structure and the GIT quotient
$\mathcal{R} e p(A, \alpha) / / /{ }_{q} G(\alpha)=\mathcal{X}(\Phi)^{-1}\left(g_{q}\right) / / G(\alpha)$
is a smooth variety with a nondegenerate Poisson bracket $\{-,-\}_{\mathrm{P}}$.
The Poisson bracket $\{-,-\}_{P}$ is solely defined by the double bracket $\{-,-\}$. If we write $m: A^{\otimes 2} \rightarrow A$ the multiplication on $A$, we get that $\{-,-\}:=m \circ\{\{-,-\}$ is a Loday bracket, such that for any $a, b \in A$,

$$
\begin{equation*}
\{\operatorname{tr} \mathcal{X}(a), \operatorname{tr} \mathcal{X}(b)\}_{\mathrm{P}}=\operatorname{tr} \mathcal{X}(\{a, b\}) \tag{2}
\end{equation*}
$$

Note that any function on the reduced space is of the particular form $\operatorname{tr} \mathcal{X}(a) \in \mathcal{O}(\mathcal{R} e p(A, \alpha))^{G(\alpha)}$

## Quiver case

Consider a quiver $Q$ and let $\bar{Q}$ be its double. Van den Bergh defined a double quasi-Hamiltonian structure on $A=\mathbb{C} \bar{Q}_{\left(1+a a^{*}\right)_{a \in \bar{Q}}}$ (the localisation of the path algebra at $\left.\left(1+a a^{*}\right)_{a \in \bar{Q}}\right)$. We set $\epsilon: \bar{Q} \rightarrow\{ \pm 1\}$ to be +1 on elements of $Q$, the initial quiver, and to be -1 on $\bar{Q}-Q$, the set of double arrows.
Proposition 1 [2, Section 2]. For a suitable ordering <on $\bar{Q}$, Van den Bergh's double bracket is given by
$\{a, a\}\}=\frac{1}{2} \epsilon(a)\left(a^{2} \otimes e_{t(a)}-e_{h(a)} \otimes a^{2}\right) \quad(a \in \bar{Q})$
$\left.\left\{a, a^{*}\right\}\right\}=e_{h(a)} \otimes e_{t(a)}+\frac{1}{2} a^{*} a \otimes e_{t(a)}+\frac{1}{2} e_{h(a)} \otimes a a^{*}$ $+\frac{1}{2}\left(a^{*} \otimes a-a \otimes a^{*}\right) \delta_{h(a), t(a)} \quad(a \in Q)$
$\{a, b\}=\frac{1}{2} e_{h(a)} \otimes a b+\frac{1}{2} b a \otimes e_{t(a)} \quad\left(a<b, b \neq a^{*}\right)$ $-\frac{1}{2}(b \otimes a) \delta_{h(a), h(b)}-\frac{1}{2}(a \otimes b) \delta_{t(a), t(b)}$,
where $t(a)(r e s p . h(a))$ denotes the vertex which is the tail (resp. head) of $a$, and the ( $e_{i}$ ) are elements of the algebra indexed by the vertex set such that $e_{i} e_{j}=\delta_{i j} e_{i}$.

The multiplicative moment map $\Phi$ corresponding to this structure comes from the defining relation for the multiplicative preprojective algebra associated to $Q$.

## ONE-LOOP QUIVER

We look at the quiver $\bar{Q}$, which is the double of the one-loop quiver $x$ with an extra arrow.


A suitable moduli space of representations is given by the set of matrices

$$
X, Y \in \operatorname{Mat}_{n \times n}(\mathbb{C}), \quad V \in \operatorname{Mat}_{n \times 1}(\mathbb{C}), \quad W \in \operatorname{Mat}_{1 \times n}(\mathbb{C}),
$$

satisfying $\left(\operatorname{Id}_{n}+X Y\right)\left(\operatorname{Id}_{n}+Y X\right)^{-1}\left(\operatorname{Id}_{n}+V W\right)=q_{0} \operatorname{Id}_{n}$ for some $q_{0} \in \mathbb{C}^{\times}$, under the identification of the orbits of the action of $\mathrm{GL}_{n}(\mathbb{C})$ as $g .(X, Y, V, W)=\left(g X g^{-1}, g Y g^{-1}, g V, W g^{-1}\right)$, for $g \in \mathrm{GL}_{n}(\mathbb{C})$. We write this space $\mathcal{C}_{n, q_{0}}$. On a dense open subset $\mathcal{C}_{n, q_{0}}^{\circ}$ of $\mathcal{C}_{n, q_{0}}$, each orbit contains an element $(X, Y, V, W)$ such that, for a set of log-canonical coordinates ( $x_{i}, \sigma_{i}$ ), we have $X=A$ with $A=\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)$ and

$$
\begin{equation*}
Y+X^{-1}=\left(L_{i j}\right) \text { for } L_{i j}=\frac{\left(q_{0}-1\right) \sqrt{\sigma_{i} \sigma_{j}}}{q_{0}-x_{i} x_{j}^{-1}} \prod_{l \neq i} \sqrt{\frac{q_{0}-x_{l} x_{i}^{-1}}{1-x_{l} x_{i}^{-1}}} \prod_{k \neq j} \sqrt{\frac{q_{0}-x_{k} x_{j}^{-1}}{1-x_{k} x_{j}^{-1}}} \tag{3}
\end{equation*}
$$

This is the Lax matrix for the trigonometric Ruijsenaars-Schneider model.
The elements in involution at the algebra level give that the following families can define integrable systems :

$$
\begin{equation*}
\left\{\operatorname{tr} A^{k}\right\}_{k \in \mathbb{N}}, \quad\left\{\operatorname{tr}(L-A)^{k}\right\}_{k \in \mathbb{N}}, \quad\left\{\operatorname{tr}(L A)^{k}\right\}_{k \in \mathbb{N}}, \quad\left\{\operatorname{tr} L^{k}\right\}_{k \in \mathbb{N}} \tag{4}
\end{equation*}
$$

Thus, the double quasi-Poisson structure on $A$ implies the integrability of the Ruijsenaars-Schneider model (and its variants). See [2, Section 3] for further explanations and discussions of these Hamiltonians.

## CYCLIC QUIVER

In the extended one-loop quiver $Q$, we can replace the loop $x$ (and its double $y$ ) by a cycle consisting of $m \geq 2$ vertices labelled by $\mathbb{Z}_{m}$ with arrows $x_{s}: s \rightarrow s+1$ (and their doubles $y_{s}: s+1 \rightarrow s$ ) for all $s \in \mathbb{Z}_{m}$. By looking at the representation space, we get a smooth Poisson variety $\mathcal{C}_{n, \mathbf{t}}(m)$ after quasi-Hamiltonian reduction, for a regular $\mathbf{t}=\left(t_{s}\right) \in\left(\mathbb{C}^{\times}\right)^{m}$. We can define a dense open subset $\mathcal{C}_{n, \mathbf{t}}^{\circ}(m) \subset \mathcal{C}_{n, \mathbf{t}}(m)$ and a map $\xi: \mathcal{C}_{n, \mathbf{t}}^{\circ}(m) \rightarrow \mathcal{C}_{n, q}^{\circ}$ (the latter is given above by setting $q=t_{m-1}$ ) such that $\xi$ is an isomorphism of Poisson varieties.
By adapting the argument from the one-loop quiver case, we find generalised Ruijsenaars-Schneider models with $\left(\mathbb{Z}_{m}\right)^{n}$-symmetry. Furthermore, the involution of the different families can be checked at the algebra level. They are defined as

$$
\begin{array}{ll}
\left\{G_{m, k}:=\operatorname{tr}\left(A^{-1} L^{m}\right)^{k}\right\}_{k \in \mathbb{N}}, & \text { and } \\
\left\{H_{m, k}:=\operatorname{tr}\left(A^{-1} P(L)\right)^{k}\right\}_{k \in \mathbb{N}}, & \text { for } P(L)=\prod_{s=0}^{m-1}\left(L-t_{s}^{-1} \operatorname{Id}_{n}\right) . \tag{5}
\end{array}
$$

Using the map $\xi$, we can pull back the log-canonical coordinates $\left(x_{i}, \sigma_{i}\right)$ at regular points. For any $m \geq 2$, the first element $G_{m, 1}$ takes the form

$$
\begin{equation*}
G_{m, 1}=\sum_{1 \leq j_{0}, \ldots, j_{m-1} \leq n}\left(\sigma_{j_{0}} \ldots \sigma_{j_{m-1}}\right) x_{j_{0}}^{-1} \prod_{s=0}^{m-1} \frac{t-1}{t-x_{j_{s}} x_{j_{s+1}}^{-1}} \prod_{s=0}^{m-1} \prod_{a \neq j_{s}}^{n} \frac{t-x_{a} x_{j_{s}}^{-1}}{1-x_{a} x_{j_{s}}^{-1}} \tag{6}
\end{equation*}
$$

Note that this expression also makes sense for $m=0,1$. The second family is more general as in the limit $t_{s} \rightarrow \infty$, the function $H_{m, j}$ tends to $G_{j, m}=\operatorname{tr}\left(A^{-1} L^{m}\right)^{j}$. It is possible to write explicitly each element $H_{m, 1}$ as a linear combination of $\left\{G_{m^{\prime}, j} \mid m^{\prime} \leq m\right\}$. For example with $m=2$

$$
\begin{equation*}
H_{2,1}=G_{2,1}-\left(t_{0}^{-1}+t_{1}^{-1}\right) G_{1,1}+\left(t_{0} t_{1}\right)^{-1} G_{0,1} \tag{7}
\end{equation*}
$$

These functions are defined on the same phase space as the Hamiltonian for the trigonometric RuijsenaarsSchneider. Their quantum versions appeared recently in the context of supersymmetric gauge theory and cyclotomic DAHAs, as well as in the context of the Macdonald theory. See [2, Sections 4-5] for additional details.

## WORK IN PROGRESS : THE SPIN TRIGONOMETRIC RS MODEL

We are applying this method to obtain the spin version of the trigonometric Ruijsenaars-Schneider model, and we can prove the conjecture given in [1] that the space variables $\left(q_{i}\right)$ and spin variables $\left(f_{i j}\right)$ form a Poisson algebra with brackets $\left\{q_{i}, q_{k}\right\}=0,\left\{f_{i j}, q_{k}\right\}=-\delta_{j k} f_{i j}$ and

$$
\begin{aligned}
\left\{f_{i j}, f_{k l}\right\}= & {\left[\operatorname{coth}\left(q_{i k}\right)+\operatorname{coth}\left(q_{j l}\right)+\operatorname{coth}\left(q_{k j}\right)+\operatorname{coth}\left(q_{l i}\right)\right] f_{i j} f_{k l} } \\
& +\left[\operatorname{coth}\left(q_{i k}\right)+\operatorname{coth}\left(q_{j l}\right)+\operatorname{coth}\left(q_{k j}+\gamma\right)-\operatorname{coth}\left(q_{i l}+\gamma\right)\right] f_{i l} f_{k j} \\
& +\left[\operatorname{coth}\left(q_{k i}\right)+\operatorname{coth}\left(q_{i l}+\gamma\right)\right] f_{i j} f_{i l}+\left[\operatorname{coth}\left(q_{j k}\right)-\operatorname{coth}\left(q_{j l}+\gamma\right)\right] f_{i j} f_{j l} \\
& +\left[\operatorname{coth}\left(q_{k i}\right)+\operatorname{coth}\left(q_{k j}+\gamma\right)\right] f_{k j} f_{k l}+\left[\operatorname{coth}\left(q_{i l}\right)-\operatorname{coth}\left(q_{l j}+\gamma\right)\right] f_{l j} f_{k l}
\end{aligned}
$$

where we set $q_{i j}=q_{i}-q_{j}$. In fact, the elements $\left(f_{i j}\right)$ can be defined from another set of spin variables $\left(\mathbf{a}_{i}^{\alpha}, \mathbf{c}_{i}^{\alpha}\right)$ by $f_{i j}=\sum_{\alpha=1}^{d} \mathbf{a}_{i}^{\alpha} \mathbf{c}_{j}^{\alpha}$, where $d$ is the number of spins. Our formalism allows us to compute the Poisson algebra for the elements $\left(x_{i}, \mathbf{a}_{i}^{\alpha}, \mathbf{c}_{i}^{\alpha}\right)$.
We are also studying some variants, as well as generalised spin models with $\left(\mathbb{Z}_{m}\right)^{n}$-symmetry.

## References

## CONTACT INFORMATION

Maxime Fairon, School of Mathematics, University of Leeds, LS2 9JT Leeds (UK) Email : mmmfai@leeds.ac.uk
[1] G. Arutyunov and S. Frolov. On the Hamiltonian structure of the spin Ruijsenaars-Schneider model. J. Phys. A, 31(18):4203-4216, 1998. [2] O. Chalykh and M. Fairon. Multiplicative quiver varieties and generalised Ruijsenaars-Schneider models. arXiv:1704.0581 [math.QA]. [3] M. Van den Bergh. Double Poisson algebras. Trans. Amer. Math. Soc., 360(11):5711-5769, 2008.

