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5. COMMENTS AND OPEN PROBLEMS
Let’s emphasize that we have developped a straightforward method to obtain integrable systems in the Calogero-Moser
family from quivers, and that we can check involutivity of functions already at the algebra level.
Furthermore, we can precisely write the Poisson bracket in local coordinates in each case, which was an open problem
for the spin trigonometric RS model. Also, the interesting flows can be explicitly integrated. In each case, we can find
generalisations with Sn n Znm symmetry by looking at extended cyclic quivers.
We know which Hamiltonian algebra yields the spin trigonometric CM case in the same manner. At the moment, we
can obtain the elliptic CM system from a Hamiltonian algebra only for specific spectral parameters, and the general case
constitutes an interesting problem. A more challenging question consists in finding the algebra that would lead to the
elliptic RS system. Even more difficult : which integrable systems come from a (quasi-)Hamiltonian algebra?

OVERVIEW
One aspect of non-commutative algebraic geometry con-
sists in following Kontsevich-Rosenberg’s philosophy,
which states that the non-commutative version of a struc-
ture defined on a non-commutative algebra should yield
the corresponding classical structure on the representa-
tion spaces of this algebra. The work of Van den Bergh
[VdB] deals with the introduction of non-commutative
(quasi-)Poisson geometry, which contains the necessary
objects to perform a (quasi-)Hamiltonian reduction on the
corresponding representation spaces. In particular, Van
den Bergh applies this formalism to quivers.
We explain how to search for integrable systems in this
context, and why extended cyclic quivers are a good start-
ing point to study systems in the Calogero-Moser family.

1. REPRESENTATION SPACES

Given a unital associative algebra A over C and N ∈ N×,
the representation space Rep(A,N) is the affine scheme
defined by the coordinate ring generated by symbols aij
for a ∈ A, 1 ≤ i, j ≤ N , C-linear in a and satisfying

Σj aijbjk = (ab)ik , 1ij = δij .

If we write X (a) for the N × N matrix (aij) representing
a, we get the rules X (a)X (b) = X (ab) and X (1) = IdN .
In the finitely generated case, we see this association as

A =C〈am〉/〈〈Fl(a1, . . . , aM ) = 0〉〉
↓ Am := X (am)

Rep(A,N) ={Am ∈ glN (C) | Fl(A1, . . . , AM ) = 0N}
with 1 ≤ l ≤ L, 1 ≤ m ≤ M for some L,M ∈ N. There is
a natural GLn(C) action by simultaneous conjugation.

2. THE QUIVER CASE
Consider a quiver Q with a finite set of arrows a ∈ Q
between a finite set of vertices I . We define h, t : Q → I
as the maps assigning to an arrow a its head h(a) or its
tail t(a). Given a, b ∈ Q, denote by ab the path given by
following a then b. If h(a) 6= t(b), ab = 0. A general path
is a word whose letters are the arrows of Q.
To each vertex s ∈ I , we associate an element es such
that eraes = a δr,t(a)δs,h(a). We form the path algebra CQ
generated by all paths and we decompose its unit as 1 =∑
s es since eres = δrses.

Fix α = (αs) ∈ NI and set N =
∑
s αs. A representa-

tion of Q of dimension α consists in attaching the vector
space Cαs at each s ∈ I and see the arrows as linear maps
between them (acting from the right!)

Rep(CQ,α) :=
∏
a∈Q {X (a) ∈ Mat(αt(a) × αh(a),C)}

We see the representation space Rep(CQ,α) as the subset
of Rep(CQ,N) such that each es is represented by the s-th
diagonal identity block of size αs. We get an action of the
algebraic group

∏
s GLαs

(C) on Rep(CQ,α) if we embed
it diagonally inside GLn(C), which acts by conjugation.

∞ 0

Example :

quiver Q̄(d)

v1, . . . , vd

w1, . . . , wd

x

y

For n, d ∈ N×, α0 = n and α∞ = 1, we obtain the space
Md := Rep(CQ̄(d), α) characterised by the data

X,Y ∈ gln(C),

Vα ∈ Mat(1× n,C), α = 1, . . . , d

Wα ∈ Mat(n× 1,C), α = 1, . . . , d

(1)

3. DICTIONARY FOR THE POISSON CASE
Assume that 1 ∈ A can be written in terms of orthogonal idempotents 1 =

∑
s es, so A is a B = ⊕sCes-algebra. As in

the quiver case, take N =
∑
s αs and consider that in Rep(A,N) each es is represented by the the s-th diagonal identity

block of X (1) = IdN with size αs. Recall that O(Rep(A,N)) = {aij | a ∈ A, 1 6 i, j 6 N}.
We want to define a Poisson structure on Rep(A,N) completely determined on A. Following [VdB], we put

{aij , bkl} := {{a, b}}′kj {{a, b}}
′′
il for {{a, b}} = {{a, b}}′ ⊗ {{a, b}}′′ ∈ A⊗A a double bracket. (2)

A double bracket is a B-linear map {{−,−}} : A⊗2 → A⊗2

which is cyclically antisymmetric and a derivation for the
outer bimodule structure in its second argument.
To any double bracket, we can naturally associate a triple
bracket Jac{{−,−}} : A⊗3 → A⊗3. A double bracket is said
to be Poisson if Jac{{−,−}} = 0.
Using the idempotent decomposition of unity, we define
the s-th gauge element Es : A→ A⊗2, by

Es(a) = aes ⊗ es − es ⊗ esa . (3)

We say that µ =
∑
s µs for µs ∈ esAes is a momentum

map if {{µs,−}} = Es. Such a triple (A, {{−,−}} , µ) is called
a Hamiltonian algebra.

Theorem 1 [VdB] If A has a double bracket {{−,−}}, then (2)
defines an antisymmetric biderivation {−,−} on Rep(A,N). If
{{−,−}} is Poisson, then {−,−} is a Poisson bracket.

Theorem 2 [VdB] If (A, {{−,−}} , µ), is a Hamiltonian al-
gebra, then X (µ) is a momentum map for the action of∏
s GLαs

(C) on (Rep(A,N), {−,−}) by conjugation.

Van den Bergh constructed a Hamiltonian algebra for any
double quiver, and this yields usual quiver varieties.

Theorem 3 If {{a, a}} =
∑
s(es ⊗ bs − bs ⊗ es) for some

a, bs ∈ A, the element a is said involutive and the functions
(tr(X (a)k))k are in involution.

3.2. SPIN RATIONAL CM MODEL

Take A = CQ̄(d), d ≥ 2. This algebra is also Hamiltonian,
and the moment map now reads

µ = e0([x, y]−Σαwαvα)e0 + e∞(Σαvαwα)e∞

Consider the representation spaceMd. Again, for generic
λ, the space X (µ)−1(Λ)/G is a complex Poisson manifold
denoted Cdn,λ. We can write it as

{X,Y, Vα,Wα | XY − Y X = λ Idn +ΣαWαVα}/GLn(C)

We can recognise the space for the Calogero-Moser sys-
tem with d spins introduced in [GH]. Indeed, we have
generically when X = diag(x1, . . . , xn) that

Yij = δijpi + δ(i6=j)

∑
α a

α
i c
α
j

xi − xj
, (Wα)i = aαi , (Vα)j = cαj ,

with
∑
α a

α
i c
α
i = −λ. We get the Poisson commutativity

of the (trY k)k because y ∈ A is involutive. In fact, we
can check the involutivity of the nd elements forming the
integrable system containg trY 2 already in A.

3.1. RATIONAL CM MODEL

Take A = CQ̄(1). Following Van den Bergh, this algebra
is Hamiltonian and such that, setting v = v1 and w = w1,

{{x, x}} = {{y, y}} = 0 , µ = e0([x, y]− wv)e0 + e∞vwe∞

Consider the representation spaceM1 given by matrices
X,Y, V,W as in (1). For generic λ, put Λ = (λ Idn,−nλ)
and the level set {X (µ) = Λ} is smooth so that for
G = GLn(C), under GLn ∼= (GLn×C×)/C×, the space
X (µ)−1(Λ)/G given by

{X,Y, V,W | XY − Y X = λ Idn +WV }/GLn(C)

is a complex Poisson manifold denoted Cn,λ. The case
λ = 1 appears as the n-th Calogero-Moser space in [W].
WhenX is in diagonal form, Y is the Calogero-Moser Lax
matrix and we get the Poisson commutativity of its sym-
metric functions because y ∈ A is involutive. The flow of
any trY k can be integrated either explicitly, or obtained
by remarking that the (trY k)nk=1 form an integrable sys-
tem.

4. DICTIONARY FOR THE QUASI-POISSON CASE
With the notations of the Poisson case, we want to determine {{−,−}} on A to define a quasi-Poisson bracket by (2).

A double bracket is quasi-Poisson if Jac{{−,−}} equals
1
12

∑
s {{−,−,−}}E3

s
. Here, the triple bracket {{−,−,−}}E3

s

is naturally defined from the gauge element Es, which is
the double derivation given by (3).
We say that Φ =

∑
s Φs, Φs ∈ esAes, is a multiplicative

momentum map if {{Φs,−}} = 1
2 (ΦsEs + EsΦs). Such a

triple (A, {{−,−}} ,Φ) is called a quasi-Hamiltonian alge-
bra.
Van den Bergh defined a quasi-Hamiltonian algebra from
any double quiver. The structure gives rise to a Poisson
bracket on multiplicative quiver varieties.

Theorem 4 Let (A, {{−,−}} ,Φ) be a quasi-Hamiltonian alge-
bra, and consider G :=

∏
s GLαs

(C) acting on Rep(A,N)
by conjugation. Then {{−,−}} defines a quasi-Poisson bracket
{−,−} on Rep(A,N) by (2), and X (Φ) is a corresponding
(multiplicative) momentum map.

Theorem 4 is proved in [VdB] for a differential double
quasi-Poisson bracket, but holds in any case [F2].

Theorem 5 If a ∈ A is involutive (see Theorem 3), then the
functions (tr(X (a)k))k are in involution in the Poisson alge-
bras O(Rep(A,N))G, or O(X (Φ)−1(g))G for any g ∈ G.

4.2. SPIN TRIGO. RS MODEL

By looking at A = CQ̄(d), d ≥ 2, we can obtain
in a way similar to the non-spin case a Poisson man-
ifold Rdn,q given by GLn(C)-orbits of generic elements
(X,Y, Vα,Wα) ∈Md such that

XYX−1Y −1 = q(Idn +WdVd) . . . (Idn +W1V1) .

Generically, for some spin variables (aαi , c
α
j ),

X = diag(x1, . . . , xn) , Yij = q

∑
α a

α
i c
α
j xj

xi − qxj
.

This is the Lax matrix for the spin trigonometric RS sys-
tem, and the construction is given in [CF2]. It can also be
obtained by looking at cyclic quivers [F1].

4.1. TRIGONOMETRIC RS MODEL

A localisation of A = CQ̄(1) has a quasi-Hamiltonian al-
gebra structure such that {{y, y}} = 1

2 (e0 ⊗ y2 − y2 ⊗ e0)
and Φ = e0xyx

−1y−1(1 + wv)−1e0 + e∞(1 + vw)e∞.
For generic q ∈ C×, we obtain by quasi-Hamiltonian re-
duction of M◦1 ⊂ M1, where X,Y, Idn +WV are invert-
ible, the complex Poisson manifoldRn,q
{X,Y, V,W | XYX−1Y −1 = q(Idn +WV )}/GLn(C).

A review of this simple case explaining how to see Y as
the Lax matrix for the RS system can be found in [CF1],
together with generalisations. Here, the symmetric func-
tions (trY k)k Poisson commute because y ∈ A is involu-
tive. Moreover, flows can be precisely integrated.


