Spin Ruijsenaars-Schneider systems from cyclic quivers

Maxime Fairon University of Glasgow

Overview

A fruitful research direction in non-commutative algebraic geometry consists in following the Kontsevich-Rosenberg principle: given a classical structure P defined over commutative algebras, a structure P_{nc} on an associative algebra A has algebro-geometric meaning if it induces P on the representation spaces of A. The work of Van den Bergh [5] deals with the introduction of noncommutative Poisson geometry in this context, and it encodes the non-commutative version of (quasi-)Hamiltonian reduction. We explain how to obtain integrable systems in this framework by extending cyclic quivers.

1. Background

Given a unital associative algebra A over \mathbb{C} and $N \in \mathbb{N}^{\times}$, the representation space $\operatorname{Rep}(A, N)$ is the affine scheme defined by the coordinate ring generated by symbols $a_{i j}$ for $a \in A, 1 \leq i, j \leq N$, \mathbb{C}-linear in a and satisfying

$$
\Sigma_{j} a_{i j} b_{j k}=(a b)_{i k}, \quad 1_{i j}=\delta_{i j}
$$

If we write $\mathcal{X}(a)$ for the $N \times N$ matrix $\left(a_{i j}\right)$ representing a, we get the rules $\mathcal{X}(a) \mathcal{X}(b)=\mathcal{X}(a b)$ and $\mathcal{X}(1)=\operatorname{Id}_{N}$
There is a natural $\mathrm{GL}_{N}(\mathbb{C})$ action on $\operatorname{Rep}(A, N)$ by simultaneous conjugation.

We want a Poisson structure on $\operatorname{Rep}(A, N)$ completely determined on A. Following [5], we put

$$
\begin{equation*}
\left\{a_{i j}, b_{k l}\right\}:=\left\{\{a, b\}_{k j}^{\prime}\{a, b\}_{i l}^{\prime \prime},\right. \tag{1}
\end{equation*}
$$

where $\{\{a, b\}\}=\left\{\{a, b\}^{\prime} \otimes\{a, b\}^{\prime \prime} \in A \otimes A\right.$ is obtained from a double Poisson bracket

$$
\{-,-\}: A^{\otimes 2} \rightarrow A^{\otimes 2}
$$

This bilinear map satisfies non-commutative skewsymmetry/derivation rules, and a Jacobi identity in $A^{\otimes 3}$, making (1) a Poisson bracket. An element $\mu_{A} \in A$ is a moment map if

$$
\left\{\mu_{A}, a\right\}=a \otimes 1-1 \otimes a .
$$

Theorem 1 ([5]) Fix $\left(A,\left\{[-,-\}, \mu_{A}\right)\right.$ as above.
Using $\mathcal{X}\left(\mu_{A}\right): \operatorname{Rep}(A, N) \rightarrow \mathfrak{g l}_{N}, \lambda \in \mathbb{C}$, the space $\mathcal{X}\left(\mu_{A}\right)^{-1}\left(\lambda \mathrm{Id}_{N}\right) / / \mathrm{GL}_{N}(\mathbb{C})$
inherits the Poisson bracket of $\operatorname{Rep}(A, N)$ which is determined by $\{\{-,-\}$ through (1).

Remark 2 We will use an analogue of Theorem 1 in the quasi-Poisson setting. We end up with a genuine Poisson bracket on a reduced space [5].

Remark 3 We can construct double brackets from quivers [5]. We then use a reduction by some diagonal subgroup $\prod_{s} \mathrm{GL}_{n_{s}}(\mathbb{C}) \subset \mathrm{GL}_{N}(\mathbb{C})$.

References

[1] Chalykh, O., Fairon, M.: Multiplicative quiver varieties and generalised Ruijsenaars-Schneider models. J. Geom. Phys. 121, 413-437 (2017). arXiv:1704.05814
[2] Chalykh, O., Fairon, M.: On the Hamiltonian formulation of the trigonometric spin Ruijsenaars-Schneider system. Lett. Math. Phys. 110, 2893-2940 (2020). arXiv:1811.08727
[3] Fairon, M.: Spin versions of the complex trigonometric RuijsenaarsSchneider model from cyclic quivers. J. of Int. Syst. 4, no. 1, xyz008 (2019). arXiv:1811.08717
[4] Fairon, M.: Multiplicative quiver varieties and integrable particle systems. PhD thesis, University of Leeds (2019). Available at http://etheses.whiterose.ac.uk/24498/
[5] Van den Bergh, M.: Double Poisson algebras. Trans. Amer. Math. Soc., 360 no. 11, 5711-5769 (2008). arXiv:math/0410528

2. RUIJSENAARS-SCHNEIDER SYSTEM FROM A QUIVER

Idea: We derive a space whose Poisson bracket is determined by a double quasi-Poisson bracket associated with a quiver. We follow the general scheme outlined in Part 1.

Step 1: Form the double \bar{Q}_{1} of Q_{1}. We can de$\overline{\text { fine a d }}$ double quasi-Poisson bracket $\{[-,-\}$ on a localisation A_{1} of the path algebra $\mathbb{C} \bar{Q}_{1}$.
Step 2: $\operatorname{Rep}\left(A_{1},(1, n)\right)$ is formed of (X, Z, V, W) (see left) with $1+V W \neq 0$, and inherits a quasiPoisson bracket by Equation (1).
Step 3: Fixing $q \in \mathbb{C}^{\times}$, we get a Poisson variety $\overline{\mathcal{C}_{n, q}}:=\left\{X Z X^{-1} Z^{-1}=q\left(\mathrm{Id}_{n}+V W\right)\right\} / / \mathrm{GL}_{n}(\mathbb{C})$ and the functions $\left(\operatorname{tr}\left(Z^{k}\right)\right)_{k \in \mathbb{Z}}$ Poisson commute.

Result: We can understand the Poisson structure on $\mathcal{C}_{n, q}$ using the double bracket $\{-,-\}$. In local coordinates, Z is the Lax matrix of the complex trigonometric Ruijsenaars-Schneider (RS) system [1].

3.1. First cyclic case

cyclic quiver $Q_{1}^{(m)}$
on $m \geq 2$ vertices with an extra arrow

Starting with $Q_{1}^{(m)}$, we follow Steps 1-3 of Part 2 to get a Poisson variety $\mathcal{C}_{n, \mathbf{q}}^{(m)}$ which is locally isomorphic to some $\mathcal{C}_{n, q}$ as a Poisson variety.
We can realise the RS system on $\mathcal{C}_{n, \mathbf{q}}^{(m)}$, as well as cyclic generalisations of this system [1]. Quantum analogues of these different systems have appeared in supersymmetric gauge theory, or in relation to Double Affine Hecke Algebras and MacDonald theory [1].

3.2. SPIN RS SYSTEM

For $d \geq 2$, quiver Q_{d} obtained from a loop by extension with d arrows

Starting with Q_{d}, we follow Steps 1-3 of Part 2 to get a Poisson variety $\mathcal{C}_{n, q, d}$ of dimension $2 n d$.
We can prove that the functions $\left(\operatorname{tr}\left(Z^{k}\right)\right)_{k \in \mathbb{Z}}$ representing the "double" of the loop-arrow form a degenerate integrable system.
In local coordinates, Z is the Lax matrix of the trigonometric spin RS system [2]. We can also write down the Poisson bracket in terms of those coordinates and solve a conjecture formulated by Arutyunov and Frolov in 1998.

4. GENERALISED RS SYSTEMS FROM CYCLIC QUIVERS

Fix $m \geq 2, \mathbf{d}=\left(d_{s}\right) \in \mathbb{N}^{m}$, and $\mathbf{q}=\left(q_{s}\right) \in\left(\mathbb{C}^{\times}\right)^{m}$ Consider $Q_{\mathbf{d}}^{(m)}$ as the cyclic quiver on m vertices with d_{s} extra arrows to the vertex s in the cycle
We can follow Steps 1-3 of Part 2 to get $\mathcal{C}_{n, \mathbf{q}, \mathrm{~d}}(\mathrm{~m})$ which is a variety with a Poisson bracket induced by a double quasi-Poisson bracket $\{\{-,-\}$

We can explicitly parametrise the space $\mathcal{C}_{n, \mathbf{q}, \mathrm{~d}}^{(m)}$ in terms of the matrices

$$
X_{s}, Z_{s} \in \mathrm{GL}_{n}(\mathbb{C}), \quad V_{s, \alpha} \in \operatorname{Mat}(1 \times n, \mathbb{C}), W_{s, \alpha} \in \operatorname{Mat}(n \times 1, \mathbb{C}), \quad 1 \leq \alpha \leq d_{s}, 0 \leq s \leq m-1,
$$

satisfying the m relations $X_{s} Z_{s} X_{s-1}^{-1} Z_{s-1}^{-1}=q_{s} \prod_{\alpha=1}^{d_{s}}\left(\operatorname{Id}_{n}+W_{s, \alpha} V_{s, \alpha}\right)$, where we take orbits of

$$
g \cdot\left(X_{s}, Z_{s}, W_{s, \alpha}, V_{s, \alpha}\right)=\left(g_{s} X_{s} g_{s+1}^{-1}, g_{s+1} Z_{s} g_{s}^{-1}, g_{s} W_{s, \alpha}, V_{s, \alpha} g_{s}^{-1}\right), \quad g=\left(g_{s}\right) \in \mathrm{GL}_{n}(\mathbb{C})^{m} .
$$

Result: We can understand the Poisson structure on $\mathcal{C}_{n, \mathbf{q}, \mathrm{~d}}^{(m)}$ using the double bracket $\{-,-\}$. In local coordinates, $Z_{\bullet}:=Z_{m-1} \ldots Z_{0}$ and $\left(X_{s} Z_{s}\right)_{s=0}^{m-1}$ can be interpreted as Lax matrices for generalisations of the trigonometric spin RS system, whose symmetric functions are degenerately integrable [4].
The case $\mathbf{d}=\left(d_{0}, 0, \ldots, 0\right), d_{0} \geq 2$, is treated in [3]; the subcase $d_{0}=1$ appears in [1] (see Part 3.1).

5. COMMENTS AND OPEN PRObLEMS

- Fix one of the quivers Q described above. The functions forming the integrable system can be lifted to the representation space of $\mathbb{C} \bar{Q}$, where the flows can be constructed explicitly.
- We can understand the action-angle duality of the basic cases as a map "reversing arrows".
- What is the real version of all these systems?
- Can we derive other systems (elliptic RS, Van Diejen, ...) from a non-commutative algebra?

Email : Maxime.Fairon@glasgow.ac.uk - Do not hesitate to get in touch !						
Flash talk: https://tinyurl.com/PosterFairon2021 Availability (Zoom): 13.00-14.00 BST on Tuesday 6 and Wednesday 7 April 2021, follow the link https://uofglasgow.zoom.us/j/96090400942 (Meeting ID: 9609040 0942)						

