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5. COMMENTS AND OPEN PROBLEMS
• Fix one of the quivers Q described above. The functions forming the integrable system can be lifted

to the representation space of CQ, where the flows can be constructed explicitly.
•We can understand the action-angle duality of the basic cases as a map “reversing arrows”.
◦What is the real version of all these systems?
◦ Can we derive other systems (elliptic RS, Van Diejen, ...) from a non-commutative algebra?
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OVERVIEW
A fruitful research direction in non-commutative
algebraic geometry consists in following the
Kontsevich-Rosenberg principle : given a classical
structure P defined over commutative algebras,
a structure Pnc on an associative algebra A has
algebro-geometric meaning if it induces P on the
representation spaces of A. The work of Van
den Bergh [5] deals with the introduction of non-
commutative Poisson geometry in this context,
and it encodes the non-commutative version of
(quasi-)Hamiltonian reduction. We explain how
to obtain integrable systems in this framework
by extending cyclic quivers.

1. BACKGROUND
Given a unital associative algebra A over C and
N ∈ N×, the representation space Rep(A,N) is
the affine scheme defined by the coordinate ring
generated by symbols aij for a ∈ A, 1 ≤ i, j ≤ N ,
C-linear in a and satisfying

Σj aijbjk = (ab)ik , 1ij = δij .

If we write X (a) for the N ×N matrix (aij) rep-
resenting a, we get the rules X (a)X (b) = X (ab)
and X (1) = IdN .
There is a natural GLN (C) action on Rep(A,N)
by simultaneous conjugation.

We want a Poisson structure on Rep(A,N) com-
pletely determined on A. Following [5], we put

{aij , bkl} := {{a, b}}′kj {{a, b}}
′′
il , (1)

where {{a, b}} = {{a, b}}′ ⊗ {{a, b}}′′ ∈ A ⊗ A is ob-
tained from a double Poisson bracket

{{−,−}} : A⊗2 → A⊗2 .

This bilinear map satisfies non-commutative
skewsymmetry/derivation rules, and a Jacobi
identity in A⊗3, making (1) a Poisson bracket.
An element µ

A
∈ A is a moment map if

{{µ
A
, a}} = a⊗ 1− 1⊗ a .

Theorem 1 ([5]) Fix (A, {{−,−}} , µ
A

) as above.
Using X (µ

A
) : Rep(A,N)→ glN , λ ∈ C, the space

X (µ
A

)−1(λ IdN )//GLN (C)

inherits the Poisson bracket of Rep(A,N) which is
determined by {{−,−}} through (1).

Remark 2 We will use an analogue of Theorem 1 in
the quasi-Poisson setting. We end up with a genuine
Poisson bracket on a reduced space [5].

Remark 3 We can construct double brackets from
quivers [5]. We then use a reduction by some diag-
onal subgroup

∏
s GLns

(C) ⊂ GLN (C).

2. RUIJSENAARS-SCHNEIDER SYSTEM FROM A QUIVER
Idea: We derive a space whose Poisson bracket is determined by a double quasi-Poisson bracket asso-
ciated with a quiver. We follow the general scheme outlined in Part 1.

Q1 xv Q1 xv

zw

1 n
V ∈ Mat(1× n,C)

X ∈ GLn(C)

W ∈ Mat(n× 1,C)
Z ∈ GLn(C)

Step 1: Form the double Q1 of Q1. We can de-
fine a double quasi-Poisson bracket {{−,−}} on a
localisation A1 of the path algebra CQ1.
Step 2: Rep(A1, (1, n)) is formed of (X,Z, V,W )
(see left) with 1 + VW 6= 0, and inherits a quasi-
Poisson bracket by Equation (1).
Step 3: Fixing q ∈ C×, we get a Poisson variety
Cn,q := {XZX−1Z−1 = q(Idn +VW )}//GLn(C)
and the functions

(
tr(Zk)

)
k∈Z Poisson commute.

Result: We can understand the Poisson structure on Cn,q using the double bracket {{−,−}}. In local
coordinates, Z is the Lax matrix of the complex trigonometric Ruijsenaars-Schneider (RS) system [1].

3.2. SPIN RS SYSTEM

. . .

. . .

For d ≥ 2, quiver Qd

obtained from a loop

by extension with d arrows

Starting with Qd, we follow Steps 1-3 of Part 2 to
get a Poisson variety Cn,q,d of dimension 2nd.

We can prove that the functions
(

tr(Zk)
)
k∈Z rep-

resenting the “double” of the loop-arrow form a
degenerate integrable system.
In local coordinates, Z is the Lax matrix of the
trigonometric spin RS system [2]. We can also
write down the Poisson bracket in terms of those
coordinates and solve a conjecture formulated by
Arutyunov and Frolov in 1998.

3.1. FIRST CYCLIC CASE
. . .

cyclic quiver Q(m)
1

on m ≥ 2 vertices

with an extra arrow

Starting with Q
(m)
1 , we follow Steps 1-3 of Part

2 to get a Poisson variety C(m)
n,q which is locally

isomorphic to some Cn,q as a Poisson variety.

We can realise the RS system on C(m)
n,q , as well as

cyclic generalisations of this system [1]. Quan-
tum analogues of these different systems have
appeared in supersymmetric gauge theory, or in
relation to Double Affine Hecke Algebras and
MacDonald theory [1].

4. GENERALISED RS SYSTEMS FROM CYCLIC QUIVERS
. . .

. . .

d0

d−1

d1d2

d3

d4

Fix m ≥ 2, d = (ds) ∈ Nm, and q = (qs) ∈ (C×)m

Consider Q(m)
d as the cyclic quiver on m vertices

with ds extra arrows to the vertex s in the cycle

We can follow Steps 1-3 of Part 2 to get C(m)
n,q,d,

which is a variety with a Poisson bracket induced
by a double quasi-Poisson bracket {{−,−}}

We can explicitly parametrise the space C(m)
n,q,d in terms of the matrices

Xs, Zs ∈ GLn(C), Vs,α ∈ Mat(1× n,C), Ws,α ∈ Mat(n× 1,C), 1 ≤ α ≤ ds , 0 ≤ s ≤ m− 1,

satisfying the m relations XsZsX
−1
s−1Z

−1
s−1 = qs

∏ds
α=1(Idn +Ws,αVs,α), where we take orbits of

g · (Xs, Zs,Ws,α, Vs,α) = (gsXsg
−1
s+1, gs+1Zsg

−1
s , gsWs,α, Vs,αg

−1
s ) , g = (gs) ∈ GLn(C)m .

Result: We can understand the Poisson structure on C(m)
n,q,d using the double bracket {{−,−}}. In local

coordinates, Z• := Zm−1 . . . Z0 and (XsZs)
m−1
s=0 can be interpreted as Lax matrices for generalisations

of the trigonometric spin RS system, whose symmetric functions are degenerately integrable [4].
The case d = (d0, 0, . . . , 0), d0 ≥ 2, is treated in [3]; the subcase d0 = 1 appears in [1] (see Part 3.1).


