Spin Ruijsenaars-Schneider systems from cyclic quivers MAXIME FAIRON University of Glasgow

OVERVIEW

A fruitful research direction in non-commutative algebraic geometry consists in following the *Kontsevich-Rosenberg principle*: given a classical structure P defined over commutative algebras, a structure P_{nc} on an associative algebra A has algebro-geometric meaning if it induces P on the representation spaces of A. The work of Van den Bergh [5] deals with the introduction of non-commutative Poisson geometry in this context, and it encodes the non-commutative version of (quasi-)Hamiltonian reduction. We explain how

2. RUIJSENAARS-SCHNEIDER SYSTEM FROM A QUIVER

Idea: We derive a space whose Poisson bracket is determined by a double quasi-Poisson bracket associated with a quiver. We follow the general scheme outlined in Part 1.

Step 1: Form the double \overline{Q}_1 of Q_1 . We can define a double quasi-Poisson bracket $\{\!\{-,-\}\!\}\)$ on a localisation A_1 of the path algebra $\mathbb{C}\overline{Q}_1$. **Step 2:** $\operatorname{Rep}(A_1,(1,n))$ is formed of (X, Z, V, W)(see left) with $1 + VW \neq 0$, and inherits a quasi-Poisson bracket by Equation (1). **Step 3:** Fixing $q \in \mathbb{C}^{\times}$, we get a Poisson variety

 $\mathcal{C}_{n,q} := \{ XZX^{-1}Z^{-1} = q(\mathrm{Id}_n + VW) \} // \mathrm{GL}_n(\mathbb{C})$

and the functions $(\operatorname{tr}(Z^k))_{k \in \mathbb{Z}}$ Poisson commute.

to obtain integrable systems in this framework by extending cyclic quivers.

1. BACKGROUND

Given a unital associative algebra A over \mathbb{C} and $N \in \mathbb{N}^{\times}$, the representation space $\operatorname{Rep}(A, N)$ is the affine scheme defined by the coordinate ring generated by symbols a_{ij} for $a \in A, 1 \leq i, j \leq N$, \mathbb{C} -linear in a and satisfying

 $\Sigma_j a_{ij} b_{jk} = (ab)_{ik}, \quad 1_{ij} = \delta_{ij}.$

If we write $\mathcal{X}(a)$ for the $N \times N$ matrix (a_{ij}) representing a, we get the rules $\mathcal{X}(a)\mathcal{X}(b) = \mathcal{X}(ab)$ and $\mathcal{X}(1) = \mathrm{Id}_N$.

There is a natural $GL_N(\mathbb{C})$ action on Rep(A, N) by simultaneous conjugation.

We want a Poisson structure on $\operatorname{Rep}(A, N)$ completely determined on A. Following [5], we put $\{a_{ij}, b_{kl}\} := \{\!\{a, b\}\!\}'_{kj} \{\!\{a, b\}\!\}''_{il}, \qquad (1)$ where $\{\!\{a, b\}\!\} = \{\!\{a, b\}\!\}' \otimes \{\!\{a, b\}\!\}'' \in A \otimes A$ is ob-

Result: We can understand the Poisson structure on $C_{n,q}$ using the double bracket $\{\!\{-,-\}\!\}$. In local coordinates, *Z* is the Lax matrix of the complex trigonometric Ruijsenaars-Schneider (RS) system [1].

3.1. FIRST CYCLIC CASE (m) (m

Starting with $Q_1^{(m)}$, we follow Steps 1-3 of Part 2 to get a Poisson variety $C_{n,\mathbf{q}}^{(m)}$ which is locally isomorphic to some $C_{n,q}$ as a Poisson variety.

We can realise the RS system on $C_{n,q}^{(m)}$, as well as cyclic generalisations of this system [1]. Quantum analogues of these different systems have

3.2. SPIN RS SYSTEM

For $d \geq 2$, quiver Q_d

obtained from a loop by extension with *d* arrows

Starting with Q_d , we follow Steps 1-3 of Part 2 to get a Poisson variety $C_{n,q,d}$ of dimension 2nd.

We can prove that the functions $(\operatorname{tr}(Z^k))_{k\in\mathbb{Z}}$ representing the "double" of the loop-arrow form a degenerate integrable system.

In local coordinates, *Z* is the Lax matrix of the trigonometric spin RS system [2]. We can also write down the Poisson bracket in terms of those coordinates and solve a conjecture formulated by Arutyunov and Frolov in 1998.

tained from a **double Poisson bracket**

 $\{\!\!\{-,-\}\!\!\}: A^{\otimes 2} \to A^{\otimes 2}.$

This bilinear map satisfies non-commutative skewsymmetry/derivation rules, and a Jacobi identity in $A^{\otimes 3}$, making (1) a Poisson bracket. An element $\mu_A \in A$ is a **moment map** if

 $\{\!\!\{\mu_A,a\}\!\!\}=a\otimes 1-1\otimes a\,.$

Theorem 1 ([5]) Fix $(A, \{\{-,-\}\}, \mu_A)$ as above. Using $\mathcal{X}(\mu_A) : \operatorname{Rep}(A, N) \to \mathfrak{gl}_N, \lambda \in \mathbb{C}$, the space $\mathcal{X}(\mu_A)^{-1}(\lambda \operatorname{Id}_N) / / \operatorname{GL}_N(\mathbb{C})$

inherits the Poisson bracket of Rep(A, N) which is determined by $\{\!\{-, -\}\!\}$ through (1).

Remark 2 *We will use an analogue of Theorem 1 in the quasi-Poisson setting. We end up with a genuine Poisson bracket on a reduced space [5].*

Remark 3 We can construct double brackets from quivers [5]. We then use a reduction by some diag-

appeared in supersymmetric gauge theory, or in relation to Double Affine Hecke Algebras and MacDonald theory [1].

4. GENERALISED RS SYSTEMS FROM CYCLIC QUIVERS

Fix $m \ge 2$, $\mathbf{d} = (d_s) \in \mathbb{N}^m$, and $\mathbf{q} = (q_s) \in (\mathbb{C}^{\times})^m$ Consider $Q_{\mathbf{d}}^{(m)}$ as the cyclic quiver on m vertices with d_s extra arrows to the vertex s in the cycle We can follow Steps 1-3 of Part 2 to get $\mathcal{C}_{n,\mathbf{q},\mathbf{d}'}^{(m)}$ which is a variety with a Poisson bracket induced by a double quasi-Poisson bracket $\{\!\{-,-\}\!\}$

We can explicitly parametrise the space $C_{n,\mathbf{q},\mathbf{d}}^{(m)}$ in terms of the matrices $X_s, Z_s \in \operatorname{GL}_n(\mathbb{C}), \quad V_{s,\alpha} \in \operatorname{Mat}(1 \times n, \mathbb{C}), \quad W_{s,\alpha} \in \operatorname{Mat}(n \times 1, \mathbb{C}), \quad 1 \le \alpha \le d_s, \quad 0 \le s \le m-1,$ satisfying the *m* relations $X_s Z_s X_{s-1}^{-1} Z_{s-1}^{-1} = q_s \prod_{\alpha=1}^{d_s} (\operatorname{Id}_n + W_{s,\alpha} V_{s,\alpha}),$ where we take orbits of $g \cdot (X_s, Z_s, W_{s,\alpha}, V_{s,\alpha}) = (g_s X_s g_{s+1}^{-1}, g_{s+1} Z_s g_s^{-1}, g_s W_{s,\alpha}, V_{s,\alpha} g_s^{-1}), \quad g = (g_s) \in \operatorname{GL}_n(\mathbb{C})^m.$ **Result:** We can understand the Poisson structure on $C_{n,\mathbf{q},\mathbf{d}}^{(m)}$ using the double bracket $\{\!\{-,-\}\!\}$. In local

coordinates, $Z_{\bullet} := Z_{m-1} \dots Z_0$ and $(X_s Z_s)_{s=0}^{m-1}$ can be interpreted as Lax matrices for generalisations

onal subgroup $\prod_{s} \operatorname{GL}_{n_s}(\mathbb{C}) \subset \operatorname{GL}_N(\mathbb{C}).$

REFERENCES

- [1] Chalykh, O., Fairon, M.: Multiplicative quiver varieties and generalised Ruijsenaars-Schneider models. J. Geom. Phys. 121, 413–437 (2017). arXiv:1704.05814
- [2] Chalykh, O., Fairon, M.: *On the Hamiltonian formulation of the trigonometric spin Ruijsenaars-Schneider system*. Lett. Math. Phys. 110, 2893–2940 (2020). arXiv:1811.08727
- [3] Fairon, M.: *Spin versions of the complex trigonometric Ruijsenaars-Schneider model from cyclic quivers*. J. of Int. Syst. 4, no. 1, xyz008 (2019). arXiv:1811.08717
- [4] Fairon, M.: *Multiplicative quiver varieties and integrable particle systems*. PhD thesis, University of Leeds (2019). Available at http://etheses.whiterose.ac.uk/24498/
- [5] Van den Bergh, M.: *Double Poisson algebras*. Trans. Amer. Math. Soc., 360 no. 11, 5711–5769 (2008). arXiv:math/0410528

of the trigonometric spin RS system, whose symmetric functions are degenerately integrable [4]. The case $\mathbf{d} = (d_0, 0, \dots, 0), d_0 \ge 2$, is treated in [3]; the subcase $d_0 = 1$ appears in [1] (see Part 3.1).

5. COMMENTS AND OPEN PROBLEMS

- Fix one of the quivers *Q* described above. The functions forming the integrable system can be lifted to the representation space of $\mathbb{C}\overline{Q}$, where the flows can be constructed explicitly.
- We can understand the action-angle duality of the basic cases as a map "reversing arrows".
 What is the real version of all these systems?
- Can we derive other systems (elliptic RS, Van Diejen, ...) from a non-commutative algebra?

Email : Maxime.Fairon@glasgow.ac.uk - Do not hesitate to get in touch !

Flash talk:https://tinyurl.com/PosterFairon2021Availability (Zoom):13.00-14.00 BST on Tuesday 6 and Wed

13.00-14.00 **BST** on Tuesday 6 and Wednesday 7 April 2021, follow the link https://uofglasgow.zoom.us/j/96090400942 (Meeting ID: 960 9040 0942)