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Plan for the talk

Plenary talk :

1 Double brackets and associated structures

2 Relation to integrable systems

Parallel talk :

1 IS from double Poisson brackets

2 IS from double quasi-Poisson brackets



Double brackets Relation to IS IS from double Poisson IS from double quasi-Poisson

Motivation

Following [Kontsevich, ’93] and [Kontsevich-Rosenberg, ’99]

associative C-algebra → commutative C-algebra

A −→ C[Rep(A,n)]

C[Rep(A,n)] is generated by symbols aij , ∀a ∈ A, 1 ≤ i, j ≤ n.
Rules : 1ij = δij , (a+ b)ij = aij + bij , (ab)ij =

∑
k aikbkj .

Goal : Find a property Pnc on A that gives the usual property P on
C[Rep(A,n)] for all n ∈ N×
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Towards double brackets (1)

Setup : M is a space parametrised by matrices a(1), . . . , a(r) ∈ gln(C)

⇒ C[M ] is generated by a
(1)
ij , . . . , a

(r)
ij , for 1 ≤ i, j ≤ n

Assume that M has a Poisson bracket {−,−} which has a nice form :
for any a, b = a(1), . . . , a(r)

{aij , bkl} = ckjdil , (1)

for some c, d ∈WM := C〈a(1), . . . , a(r)〉

Can we symbolically understand the Poisson bracket with matrices?
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Towards double brackets (2)

Trick : write {aij , bkl} = ckjdil as

{{a, b}}kj,il := {aij , bkl} = (c⊗ d)kj,il . (2)

As a map {{−,−}} : WM ×WM →WM ⊗WM

(Recall WM = C〈a(1), . . . , a(r)〉. Here ⊗ = ⊗C)

Antisymmetry ⇒ {{a, b}} = −τ(12) {{b, a}}
Leibniz rules :

{{a, bc}} = (b⊗ Idn) {{a, c}}+ {{a, b}} (Idn⊗c) ,
{{ad, b}} = (Idn⊗a) {{d, b}}+ {{a, b}} (d⊗ Idn) .

Jacobi identity? . . . a bit of work!
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Double brackets

We follow [Van den Bergh,double Poisson algebras,’08]

A denotes an arbitrary f.g. associative C-algebra, ⊗ = ⊗C

For d ∈ A⊗2, set d = d′ ⊗ d′′(=
∑

k d
′
k ⊗ d′′k), and τ(12)d = d′′ ⊗ d′.

Multiplication on A⊗2 : (a⊗ b)(c⊗ d) = ac⊗ bd.

Definition

A double bracket on A is a C-bilinear map {{−,−}} : A×A→ A⊗2 which
satisfies

1 {{a, b}} = −τ(12) {{b, a}} (cyclic antisymmetry)

2 {{a, bc}} = (b⊗ 1) {{a, c}}+ {{a, b}} (1⊗ c) (outer derivation)

3 {{ad, b}} = (1⊗ a) {{d, b}}+ {{a, b}} (d⊗ 1) (inner derivation)
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Double Poisson bracket

Recall d = d′ ⊗ d′′ ∈ A⊗2 (notation)  {{a, b}} = {{a, b}}′ ⊗ {{a, b}}′′

From a double bracket {{−,−}}, define {{−,−,−}} : A×3 → A⊗3

{{a, b, c}} =
{{
a, {{b, c}}′

}}
⊗ {{b, c}}′′

+ τ(123)
{{
b, {{c, a}}′

}}
⊗ {{c, a}}′′

+ τ(132)
{{
c, {{a, b}}′

}}
⊗ {{a, b}}′′ , ∀a, b, c ∈ A

Definition

A double bracket {{−,−}} is Poisson if {{−,−,−}} : A×3 → A⊗3 vanishes.

Example

1. A = C[x], {{x, x}} = x⊗ 1− 1⊗ x.
2. A = C〈x, y〉, {{x, x}} = 0 = {{y, y}}, {{x, y}} = 1⊗ 1.
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A first result

(notation)  {{a, b}} = {{a, b}}′ ⊗ {{a, b}}′′

Proposition (Van den Bergh,’08)

If A has a double bracket {{−,−}}, then C[Rep(A,n)] has a unique
antisymmetric biderivation {−,−}P satisfying

{aij , bkl}P = {{a, b}}′kj {{a, b}}
′′
il . (3)

If {{−,−}} is Poisson, then {−,−}P is a Poisson bracket.

Example

A = C[x], {{x, x}} = x⊗ 1− 1⊗ x endows gln(C) = C[Rep(A,n)] with

{xij , xkl}P = xkjδil − δkjxil .

This is (up to sign) KKS Poisson bracket on gln ' gl∗n
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A first dictionary

Algebra A

double bracket {{−,−}}

double Poisson bracket {{−,−}}

Geometry C[Rep(A,n)]

anti-symmetric biderivation {−,−}P

Poisson bracket {−,−}P

Problem : “nice” integrable systems usually live on reduced phase spaces

(e.g. Calogero-Moser, Ruijsenaars-Schneider systems)
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Poisson reduction

Lemma (Van den Bergh,’08)

If A has a double Poisson bracket {{−,−}}, the following defines a Lie
bracket on H0(A) = A/[A,A]

{a, b} = {{a, b}}′ {{a, b}}′′ (4)

(for (4) we take lifts in A then A
{{−,−}}−→ A⊗A m−→ A→ H0(A))

Let X (a) be such that X (a)ij = aij ∈ C[Rep(A,n)]

Then trX (a) ∈ C[Rep(A,n)]GLn = C[Rep(A,n)//GLn]

Proposition (Van den Bergh,’08)

The Poisson structure {−,−}P on Rep(A,n) descends to
Rep(A,n)//GLn in such a way that

{trX (a), trX (b)}P = trX ({a, b}) . (5)
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A second dictionary

Algebra A

double bracket {{−,−}}

double Poisson bracket {{−,−}}

(H0(A), {−,−}) is Lie algebra

Geometry C[Rep(A,n)]

anti-symmetric biderivation {−,−}P

Poisson bracket {−,−}P

{−,−}P is Poisson on C[Rep(A,n)]GLn

Recall {−,−} = m ◦ {{−,−}} on H0(A) = A/[A,A]
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Hamiltonian reduction

double Poisson bracket {{−,−}} on A  {−,−} = m ◦ {{−,−}} descends to H0(A) = A/[A,A]

Definition

µA ∈ A is a moment map if {{µA , a}} = a⊗ 1− 1⊗ a, ∀a ∈ A

For any λ ∈ C, {µA − λ, a} = 0.

⇒ Lie bracket {−,−} descends to H0(Aλ) for Aλ := A/〈µA − λ〉

Proposition (Van den Bergh,’08)

The Poisson structure {−,−}P on Rep(A,n) descends to
Rep(Aλ, n)//GLn in such a way that

{trX (a), trX (b)}P = trX ({a, b}) . (6)
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Dictionary

Algebra A

double bracket {{−,−}}

double Poisson bracket {{−,−}}

(A/[A,A], {−,−}) is Lie algebra

moment map µA
Aλ = A/(µA − λ), λ ∈ C
(Aλ/[Aλ, Aλ], {−,−}) is Lie algebra

Geometry C[Rep(A,n)]

anti-symmetric biderivation {−,−}P

Poisson bracket {−,−}P

{−,−}P is Poisson on C[Rep(A,n)]GLn

moment map X (µA)
slice Sλ := X (µA)−1(λ Idn)

{−,−}P is Poisson on C[Sλ//GLn]

Recall {−,−} = m ◦ {{−,−}} on H0(A) = A/[A,A]
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Plan for the talk

Plenary talk :

1 Double brackets and associated structures

2 Relation to integrable systems

Parallel talk :
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What can we do with double Poisson brackets?

Relation A −→ Rep(A,n)//GLn(C) (or Hamiltonian reduction)

{trX (a), trX (b)}P = trX ({{a, b}}′ {{a, b}}′′) .

Lemma

If the product {{a, b}}′ {{a, b}}′′ is a commutator, then
the functions trX (a), trX (b) Poisson commute

⇒ We should try to find a “big”family of elements (ai)i∈I ⊂ A such that
m ◦ {{ai, aj}} ∈ [A,A]

Side remark : The functional independence of the corresponding functions (trX (ai))i∈I seems

to be a purely geometric feature. I do not see how to understand it at the level of A (yet?)
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A first criterion

Lemma (The “Lax Lemma”)

Assume that a ∈ A satisfies {{a, a}} =
∑

s∈N(as ⊗ bs − bs ⊗ as)
for finitely many nonzero bs ∈ A. Then the matrix X (a) is a Lax matrix,
i.e. {trX (a)k, trX (a)l} = 0 for any k, l ∈ N.

{{
ak, al

}}
=

k−1∑
κ=0

l−1∑
λ=0

(aλ ⊗ aκ) {{a, a}} (ak−κ−1 ⊗ al−λ−1)

⇒ m ◦
{{
ak, al

}}
vanishes modulo commutators. �
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A non-example

Lemma (Weakest “Lax Lemma”)

If a ∈ A satisfies {{a, a}} = 0, then {trX (a)k, trX (a)l} = 0 .

Example

A = C〈x, y〉, {{x, x}} = 0 = {{y, y}}, {{x, y}} = 1⊗ 1.
Moment map : µA = xy − yx.
⇒ for all λ ∈ C, (trX (y)k)k Poisson commute on

Rep(A/(µA − λ), n)//GLn = {(X,Y ) | XY − Y X = λ Idn}//GLn
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How to get something interesting?

[Van den Bergh,’08] −→ a double Poisson bracket for any quiver

Example

A = C〈x, y〉
= CQ̄◦

Q̄◦ Q◦
x y x

The data {{x, x}} = 0 = {{y, y}}, {{x, y}} = 1⊗ 1, µA = xy − yx
is encoded in Q◦.

We get an interesting IS by framing :

Q̄1
0

∞

Q1
0

∞

x y

v w

x

v

Attach Cn at 0, C at ∞
⇒ Calogero-Moser space [Wilson,’98]

(trX (y)k)nk=1 define CM system
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Generalisation

[Chalykh-Silantyev,’17] −→ cyclic quivers give generalised CM systems

∞

0

m−1

1

m−2

s

s+1

s−1

s+2ds arrows vs,α :∞→ s
ds arrows ws,α : s→∞

x0 y0

xm−1 ym−1

xm−2 ym−2

xs−1ys−1

xsys

xs+1ys+1

y• = ym−1 . . . y1y0 : {{y•, y•}} = 0, so {trX (y•)
k, trX (y•)

l} = 0
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Generalisation (bis)

[Chalykh-Silantyev,’17] −→ cyclic quivers give generalised CM systems
We can visualise commuting elements :

yk•

	k

vs,αy
k
•ws,α

	k s∞

True for any framing + maximally superintegrable [F.-Görbe, in prep.]



Double brackets Relation to IS IS from double Poisson IS from double quasi-Poisson

More in the parallel session !

 details on rational CM system
 elliptic CM system

 double quasi-Poisson brackets and IS
 trigonometric RS systems from cyclic quivers

Interested to know where double brackets pop up in maths? Check :
www.maths.gla.ac.uk/∼mfairon/DoubleBrackets.html (soon updated!)

Maxime Fairon

Maxime.Fairon@glasgow.ac.uk
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Reminder

A has double Poisson bracket {{−,−}}
−→ Rep(A,n)//GLn(C) (or Hamiltonian reduction) has Poisson bracket for

{trX (a), trX (b)}P = trX ({{a, b}}′ {{a, b}}′′) ,

Lemma

If the product {{a, b}}′ {{a, b}}′′ is a commutator, then
the functions trX (a), trX (b) Poisson commute

⇒ find “many”(ai)i∈I ⊂ A such that m ◦ {{ai, aj}} ∈ [A,A]

Lemma (The “Lax Lemma”)

Assume that a ∈ A satisfies {{a, a}} =
∑

s∈N(as ⊗ bs − bs ⊗ as)
for finitely many nonzero bs ∈ A. Then the matrix X (a) is a Lax matrix,
i.e. {trX (a)k, trX (a)l} = 0 for any k, l ∈ N.
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Framed Jordan quiver

Ā = CQ̄1 is a B-algebra, B = Ce0 ⊕ Ce∞

Q̄1
0

∞

x y

v w

{{y, x}} = e0 ⊗ e0,

{{w, v}} = e∞ ⊗ e0,

other double brackets are zero

Now µ = [x, y] + [v, w] is moment map.

Get Lie bracket on H0(Āλ) = Āλ/[Āλ, Āλ]
where Āλ = Ā/([x, y]− wv = λ0e0, vw = λ∞e∞), for λ0, λ∞ ∈ C
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Framed Jordan quiver

Ā = CQ̄1 is a B-algebra, B = Ce0 ⊕ Ce∞

Q̄1
0

∞

x y

v w

{{y, x}} = e0 ⊗ e0,

{{w, v}} = e∞ ⊗ e0,

other double brackets are zero

Now µ = [x, y] + [v, w] is moment map.

Get Lie bracket on H0(Āλ) = Āλ/[Āλ, Āλ]
where Āλ = Ā/([x, y]− wv = λ0e0, vw = λ∞e∞), for λ0, λ∞ ∈ C
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Calogero-Moser space (1)

Q̄1
0

∞

x y

v w

Āλ = Ā/Jλ, Jλ = 〈[x, y]− wv = λ0e0, vw = λ∞e∞〉

For λ0 ∈ C×, λ∞ = −nλ0, ’Attach’ Cn at 0 and C at ∞

⇒ get Mλ := Rep(Āλ, (1, n))

M :={X,Y ∈ gln, V ∈ Mat1×n,W ∈ Matn×1}
Mλ :={[X,Y ]−WV = λ0 Idn} ⊂ M

For g · (X,Y, V,W ) = (gXg−1, gY g−1, V g−1, gW ), g ∈ GLn,

Mλ//GLn = Spec(C[Rep(Āλ, (1, n))]GLn)

This is n-th Calogero-Moser space [Wilson, 98]

(trY k) Poisson commute by the Lax lemma. They form an IS by counting



Double brackets Relation to IS IS from double Poisson IS from double quasi-Poisson

Calogero-Moser space (1)

Q̄1
0

∞

x y

v w
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Calogero-Moser space (2)

M :={X,Y ∈ gln, V ∈ Mat1×n,W ∈ Matn×1}
Mλ :={[X,Y ]−WV = λ0 Idn} ⊂ M

GLn action : g · (X,Y, V,W ) = (gXg−1, gY g−1, V g−1, gW )

On dense subset of Mλ//GLn, choose

X = diag(q1, . . . , qn)

V = (1, . . . , 1)

then for Darboux coordinates (qi, pi),

W = −λ0(1, . . . , 1)T , Yij = δijpj − δ(i 6=j)
λ0

qi − qj
Calogero-Moser Hamiltonian :

1

2
trY 2 =

1

2

∑
j

p2j −
∑
i 6=j

λ20
(qi − qj)2
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Spin Calogero-Moser space (1)

[Bielawski-Pidstrygach,’10; Tacchella,’15; Chalykh-Silantyev,’17]

Q̄d 0

∞

x y

v1, . . . , vd w1, . . . , wd

d ≥ 2. Ā = CQ̄d
µ0 = [x, y]−

∑
αwαvα

µ∞ =
∑

α vαwα

Āλ = Ā/(µs = λses)s=0,∞

M := {X,Y ∈ gln, Vα ∈ Mat1×n,Wα ∈ Matn×1}

Mλ//GLn := {[X,Y ]−
∑
α

WαVα = λ0 Idn}//GLn

This is n-th Calogero-Moser space with d spins/degrees of freedom

(trY k) Poisson commute but only n functionally independent...
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Spin Calogero-Moser space (2)

Using the double bracket, we can compute Poisson brackets on Mλ//GLn
for trY k and tlαβ = VαY

lWβ.

0

∞

yl

vα wβ

{trY k, trY l}P = 0 = {trY k, tlαβ}P

{tkαβ, tlγε}P = δβγt
k+l
αε − δαεtk+lγβ

Proposition

The commutative algebra generated by the elements (trY k, tkαα),
1 ≤ α ≤ d, is a Poisson-commutative subalgebra of C[Mλ//GLn] of
dimension nd.

Hence, we get Liouville integrability for any trY k.
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What else from double Poisson bracket?

• As in plenary part of the talk ⇒ framed cyclic quivers

• Can understand elliptic CM system [Chalykh-F., in prep.]

Tool : non-commutative tangent space of an algebra A0 has a double
Poisson bracket [VdB,’08]

Remark : A0 = CQ A = CQ̄ with previous {{−,−}}

Method : apply this to A0 = C[E ] for punctured elliptic curve E
Remark : two punctures shifted by µ for the spectral parameter µ of Lax
matrix of elliptic CM

Some details : end of Section 6.1 in [F., PhD thesis], etheses.whiterose.ac.uk/24498/
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Plan for the talk

Plenary talk :

1 Double brackets and associated structures

2 Relation to integrable systems

Parallel talk :

1 IS from double Poisson brackets

2 IS from double quasi-Poisson brackets
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quasi-Dictionary

Recall {−,−} = m ◦ {{−,−}} on H0(A) = A/[A,A]

Algebra A

double bracket {{−,−}}

double quasi-Poisson bracket {{−,−}}

(A/[A,A], {−,−}) is Lie algebra

multiplicative moment map ΦA

Aq = A/(ΦA − q), q ∈ C×

(Aq/[Aq, Aq], {−,−}) is Lie algebra

Geometry C[Rep(A,n)]

anti-symmetric biderivation {−,−}P

quasi-Poisson bracket {−,−}P

{−,−}P is Poisson on C[Rep(A,n)]GLn

multiplicative moment map X (ΦA)
slice Sq := X (ΦA)−1(q Idn)

{−,−}P is Poisson on C[Sq//GLn]

{trX (a), trX (b)}P = trX ({{a, b}}′ {{a, b}}′′)
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Jordan quiver

There exists an algebra with a double quasi-Poisson bracket and a moment
map associated to ANY quiver [VdB,’08]

double Jordan quiver Q̄0

x z

A = (CQ̄0)x,z = C〈x±1, z±1〉

{{z, z}} = 1
2(1⊗ z2 − z2 ⊗ 1)

+ complicated bracket...

⇒ get {trX (z)k, trX (z)l}P = 0 on rep. spaces by the Lax lemma
⇒ Z := X (z) could be an interesting Lax matrix

Remark

Moment map : Φ = xzx−1z−1

Get Lie bracket on H0(Aq) for Aq := A/(xzx−1z−1 − q), q ∈ C×.
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Ruijsenaars-Schneider space

Non-spin case / Case d = 1 : [Chalykh-F.,’17 - 1704.05814]

Q̄1
0

∞

x z

v w

Ā = CQ̄1 localised at x, z, (e0 + vw), (e∞ + wv),

Ā has double quasi-Poisson bracket/moment map

M := {X,Z ∈ GLn, V ∈ Mat1×n,W ∈ Matn×1}

Mq//GLn := {XZX−1Z−1(Idn +WV )−1 = q Idn}//GLn

Z is Lax matrix for trigonometric Ruijsenaars-Schneider system
trZ, . . . , trZn form an integrable system by the Lax lemma.

(q is not a n-th root of unity)
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Spin Ruijsenaars-Schneider space (1)

Spin case / Case d ≥ 2 [Chalykh-F.,’20 / 1811.08727]

Q̄d 0

∞

x z

v1, . . . , vd w1, . . . , wd

Ā = CQ̄d suitably localised
Ā has double quasi-Poisson bracket
Ā has a moment map

M := {X,Z ∈ GLn, Vα ∈ Mat1×n,Wα ∈ Matn×1}

⇒ Cn,q,d := {XZX−1Z−1
→∏

1≤α≤d

(Idn +WαVα)−1 = q Idn}//GLn

Rearrange as XZX−1 − qZ = qAC,  Z is spin trigo RS Lax matrix

(q is not a n-th root of unity)
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Ā has a moment map

M := {X,Z ∈ GLn, Vα ∈ Mat1×n,Wα ∈ Matn×1}

⇒ Cn,q,d := {XZX−1Z−1
→∏

1≤α≤d

(Idn +WαVα)−1 = q Idn}//GLn

Rearrange as XZX−1 − qZ = qAC,  Z is spin trigo RS Lax matrix

(q is not a n-th root of unity)



Double brackets Relation to IS IS from double Poisson IS from double quasi-Poisson

Spin Ruijsenaars-Schneider space (2)

Introduce notation tlαβ = VαZ
lWβ.

0

∞

zl

vα wβ

{trZk, trZ l}P = 0 = {trZk, tlαβ}P

{tkαβ, tlγε}P = . . .

Can we form an integrable system by extending trZ, . . . , trZn?

Problem: {tkαβ, tlγε}P is VERY complicated !
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Spin Ruijsenaars-Schneider space (3)

Idea : on Cn,q,d we have from moment map

XZX−1 = qSd , Sd := (Idn +WdVd) . . . (Idn +W1V1)Z

So trSkd Poisson commute will all tlαβ = VαZ
lWβ on Cn,q,d.

0

∞

x z

v1 w1

Cn,q,1

↪→ . . . ↪→ ↪→ . . . ↪→

↪→ . . . ↪→ ↪→ . . . ↪→

0

∞

x z

v1,...,vα w1,...,wα

Cn,q,α

0

∞

x z

v1,...,vd w1,...,wd

Cn,q,d

⇒ for Sα := (Idn +WαVα) . . . (Idn +W1V1)Z, trSkα ∈ C[Cn,q,d]
and trSkα Poisson commute with any tlγβ = VαZ

lWβ, 1 ≤ γ, β ≤ α
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Spin Ruijsenaars-Schneider space (4)

For Sα := (Idn +WαVα) . . . (Idn +W1V1)Z, trSkα ∈ C[Cn,q,d]

Proposition (Chalykh-F.)

The elements trSkα, 1 ≤ α ≤ d, k = 1, . . . , n, form an integrable system.

(Involutivity is checked with double brackets !)
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Generalisation

∞

0

m−1

1

m−2

s

s+1

s−1

s+2

x0 z0

xm−1 zm−1

xm−2 zm−2

xs−1zs−1

xszs

xs+1zs+1

Proposition

For suitable dimension vector and for generic parameters, there exists an
integrable system containing trZk• , k = 1, . . . , n, z• = zm−1 . . . z1z0.

[Chalykh-F.,’17] for one framing arrow, [F.,’19] for d framing arrows to one vertex

[F.,PhD thesis] (etheses.whiterose.ac.uk/24498/) for general case
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Thank you for your attention

Maxime Fairon

Maxime.Fairon@glasgow.ac.uk
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