Double brackets

Morphisms

quasi-...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Double (quasi-)Poisson algebras and their morphisms

Maxime Fairon

School of Mathematics and Statistics University of Glasgow

Algebra Seminar 25 November 2020

quasi-...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Plan for the talk

O Motivation

- Ouble brackets
- O Morphisms of double Poisson brackets
- The "quasi-" case

quasi-...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Quiver varieties

(we do not consider stability parameter)

<u>Fix:</u> quiver Q, dimension vector $\alpha \in \mathbb{N}^{I}$, parameter $\lambda \in \mathbb{C}^{I}$

- Consider double \overline{Q} (add $a^*: h \to t$ for each $a: t \to h$ in Q)
- Construct $\Pi^\lambda(Q)=\mathbb{C}\bar{Q}/\langle \sum_{a\in Q}[a,a^*]-\sum_{s\in I}\lambda_s e_s\rangle$

quasi-...

Quiver varieties

(we do not consider stability parameter)

<u>Fix:</u> quiver Q, dimension vector $\alpha \in \mathbb{N}^{I}$, parameter $\lambda \in \mathbb{C}^{I}$

- Consider double \overline{Q} (add $a^*: h \to t$ for each $a: t \to h$ in Q)
- Construct $\Pi^{\lambda}(Q) = \mathbb{C}\bar{Q}/\langle \sum_{a \in Q} [a, a^*] \sum_{s \in I} \lambda_s e_s \rangle$

<u>Get:</u> A *quiver variety* :

$$\mathcal{M}^{\Pi}_{\alpha,\lambda}(Q) = \operatorname{Rep}(\Pi^{\lambda}(Q), \alpha) // \operatorname{GL}(\alpha)$$

which is a Poisson variety for $(\mathcal{X}(b) \in \operatorname{Mat}_{\alpha_{t(b)} \times \alpha_{h(b)}}(\mathbb{C}) \ \forall b \in \overline{Q})$

$$\{\mathcal{X}(a)_{ij}, \mathcal{X}(a^*)_{kl}\}_{\mathbf{P}} = (\mathrm{Id}_{\alpha_{h(a)}})_{kj} \, (\mathrm{Id}_{\alpha_{t(a)}})_{il}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々⊙

quasi-...

Quiver varieties

(we do not consider stability parameter)

<u>Fix:</u> quiver Q, dimension vector $\alpha \in \mathbb{N}^{I}$, parameter $\lambda \in \mathbb{C}^{I}$

- Consider double \overline{Q} (add $a^*: h \to t$ for each $a: t \to h$ in Q)
- Construct $\Pi^{\lambda}(Q) = \mathbb{C}\bar{Q}/\langle \sum_{a \in Q} [a, a^*] \sum_{s \in I} \lambda_s e_s \rangle$

<u>Get:</u> A quiver variety :

 $\mathcal{M}^{\Pi}_{\alpha,\lambda}(Q) = \operatorname{Rep}(\Pi^{\lambda}(Q), \alpha) / / \operatorname{GL}(\alpha)$

which is a Poisson variety for $(\mathcal{X}(b) \in \operatorname{Mat}_{\alpha_{t(b)} \times \alpha_{h(b)}}(\mathbb{C}) \ \forall b \in \overline{Q})$

$$\{\mathcal{X}(a)_{ij}, \mathcal{X}(a^*)_{kl}\}_{\mathbf{P}} = (\mathrm{Id}_{\alpha_{h(a)}})_{kj} \, (\mathrm{Id}_{\alpha_{t(a)}})_{il}$$

 $\mathcal{M}^{\mathrm{II}}_{\alpha,\lambda}(Q)$ only depends on α, λ and Q seen as an undirected graph, up to isomorphism of Poisson varieties (easy)

Double brackets

Morphisms

quasi-...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Multiplicative quiver varieties

<u>Fix:</u> quiver Q, dimension vector $\alpha \in \mathbb{N}^I$, parameter $q \in (\mathbb{C}^{\times})^I$

– Algebra A_Q is localisation of $\mathbb{C}\bar{Q}$ at all $1+aa^*,1+a^*a$

- Construct
$$\Lambda^q(Q) = A_Q / \left\langle \prod_{\text{order}} (1 + aa^*)(1 + a^*a)^{-1} - \sum_{s \in I} q_s e_s \right\rangle$$

Double brackets

Morphisms

quasi-...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Multiplicative quiver varieties

<u>Fix:</u> quiver Q, dimension vector $\alpha \in \mathbb{N}^I$, parameter $q \in (\mathbb{C}^{\times})^I$

– Algebra A_Q is localisation of $\mathbb{C}\bar{Q}$ at all $1 + aa^*, 1 + a^*a$

- Construct
$$\Lambda^q(Q) = A_Q / \left\langle \prod_{\text{order}} (1 + aa^*)(1 + a^*a)^{-1} - \sum_{s \in I} q_s e_s \right\rangle$$

<u>Get:</u> A *multiplicative quiver variety* [Crawley-Boevey - Shaw,04] :

$$\mathcal{M}^{\Lambda}_{\alpha,q}(Q) = \operatorname{Rep}(\Lambda^q(Q), \alpha) / / \operatorname{GL}(\alpha)$$

These are Poisson varieties [Van den Bergh,08]

Double brackets

Morphisms

quasi-...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Multiplicative quiver varieties

<u>Fix:</u> quiver Q, dimension vector $\alpha \in \mathbb{N}^I$, parameter $q \in (\mathbb{C}^{\times})^I$

– Algebra A_Q is localisation of $\mathbb{C}\bar{Q}$ at all $1 + aa^*, 1 + a^*a$

- Construct
$$\Lambda^q(Q) = A_Q / \left\langle \prod_{\text{order}} (1 + aa^*)(1 + a^*a)^{-1} - \sum_{s \in I} q_s e_s \right\rangle$$

<u>Get:</u> A *multiplicative quiver variety* [Crawley-Boevey - Shaw,04] :

$$\mathcal{M}^{\Lambda}_{\alpha,q}(Q) = \operatorname{Rep}(\Lambda^q(Q), \alpha) //\operatorname{GL}(\alpha)$$

These are Poisson varieties [Van den Bergh,08]

 $\mathcal{M}^{\Lambda}_{\alpha,q}(Q)$ only depends on α,q and Q seen as an undirected graph, up to isomorphism of varieties [CBS,04]

A bit harder to prove : these isomorphisms preserve the Poisson structures

quasi-...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Goal for today

We will show that :

the isomorphisms of (multiplicative) quiver varieties hence obtained can be checked to preserve the Poisson structures **directly at the level of the path algebras**

quasi-...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Plan for the talk

- Motivation
- Ouble brackets
- O Morphisms of double Poisson brackets
- The "quasi-" case

quasi-...

Kontsevich-Rosenberg principle

Following [Kontsevich, '93] and [Kontsevich-Rosenberg, '99]

 $\begin{array}{rcl} \text{associative } \mathbb{C}\text{-algebra} & \to & \text{commutative } \mathbb{C}\text{-algebra} \\ A & \longrightarrow & \mathbb{C}[\operatorname{Rep}(A,n)] \end{array}$

 $\mathbb{C}[\operatorname{Rep}(A, n)]$ is generated by symbols a_{ij} , $\forall a \in A, 1 \leq i, j \leq n$. Rules : $1_{ij} = \delta_{ij}$, $(a + b)_{ij} = a_{ij} + b_{ij}$, $(ab)_{ij} = \sum_k a_{ik} b_{kj}$.

Goal : Find a property P_{nc} on A that gives the usual property P on $\mathbb{C}[\operatorname{Rep}(A, n)]$ for all $n \in \mathbb{N}^{\times}$

Double brackets

Morphisms

quasi-...

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Double brackets

We follow [Van den Bergh, double Poisson algebras,'08]

A denotes an arbitrary f.g. associative \mathbb{C} -algebra, $\otimes = \otimes_{\mathbb{C}}$

For $d \in A^{\otimes 2}$, set $d = d' \otimes d'' (= \sum_k d'_k \otimes d''_k)$, and $\tau_{(12)}d = d'' \otimes d'$. Multiplication on $A^{\otimes 2}$: $(a \otimes b)(c \otimes d) = ac \otimes bd$. Double brackets

Morphisms

quasi-...

Double brackets

We follow [Van den Bergh, double Poisson algebras,'08]

A denotes an arbitrary f.g. associative $\mathbb C$ -algebra, $\otimes = \otimes_{\mathbb C}$

For $d \in A^{\otimes 2}$, set $d = d' \otimes d'' (= \sum_k d'_k \otimes d''_k)$, and $\tau_{(12)}d = d'' \otimes d'$. Multiplication on $A^{\otimes 2}$: $(a \otimes b)(c \otimes d) = ac \otimes bd$.

Definition

A double bracket on A is a $\mathbb{C}\text{-bilinear}$ map $\{\!\!\{-,-\}\!\!\}:A\times A\to A^{\otimes 2}$ which satisfies

quasi-...

Preliminary result

$$(\text{notation}) \rightsquigarrow \{\!\!\{a, b\}\!\!\} = \{\!\!\{a, b\}\!\!\}' \otimes \{\!\!\{a, b\}\!\!\}''$$

Lemma (Van den Bergh,'08)

If A has a double bracket $\{\!\{-,-\}\!\}$, then $\mathbb{C}[\operatorname{Rep}(A,n)]$ has a unique antisymmetric biderivation $\{-,-\}_{\operatorname{P}}$ satisfying

$$\{a_{ij}, b_{kl}\}_{\mathbf{P}} = \{\!\!\{a, b\}\!\!\}'_{kj} \{\!\!\{a, b\}\!\!\}''_{il} .$$

quasi-...

Preliminary result

(notation)
$$\rightsquigarrow \{\!\!\{a, b\}\!\!\} = \{\!\!\{a, b\}\!\!\}' \otimes \{\!\!\{a, b\}\!\!\}''$$

Lemma (Van den Bergh,'08)

If A has a double bracket $\{\!\!\{-,-\}\!\!\}$, then $\mathbb{C}[\operatorname{Rep}(A,n)]$ has a unique antisymmetric biderivation $\{-,-\}_{\operatorname{P}}$ satisfying

$$\{a_{ij}, b_{kl}\}_{\mathbf{P}} = \{\!\!\{a, b\}\!\!\}'_{kj} \{\!\!\{a, b\}\!\!\}'_{il} .$$

Example

$$A=\mathbb{C}[x],\; \{\!\!\{x,x\}\!\!\}=x\otimes 1-1\otimes x \text{ endows } \mathfrak{gl}_n(\mathbb{C})=\mathbb{C}[\operatorname{Rep}(A,n)] \text{ with }$$

$$\{x_{ij}, x_{kl}\}_{\mathrm{P}} = x_{kj} \mathbf{1}_{il} - \mathbf{1}_{kj} x_{il}$$

quasi-...

Preliminary result

(notation)
$$\rightsquigarrow \{\!\!\{a, b\}\!\!\} = \{\!\!\{a, b\}\!\!\}' \otimes \{\!\!\{a, b\}\!\!\}''$$

Lemma (Van den Bergh,'08)

If A has a double bracket $\{\!\!\{-,-\}\!\!\}$, then $\mathbb{C}[\operatorname{Rep}(A,n)]$ has a unique antisymmetric biderivation $\{-,-\}_{\operatorname{P}}$ satisfying

$$\{a_{ij}, b_{kl}\}_{\mathbf{P}} = \{\!\!\{a, b\}\!\!\}'_{kj} \{\!\!\{a, b\}\!\!\}''_{il} .$$

Example

$$A = \mathbb{C}[x], \ \{\!\!\{x, x\}\!\!\} = x \otimes 1 - 1 \otimes x \text{ endows } \mathfrak{gl}_n(\mathbb{C}) = \mathbb{C}[\operatorname{Rep}(A, n)] \text{ with }$$

$$\{x_{ij}, x_{kl}\}_{\mathbf{P}} = x_{kj}\delta_{il} - \delta_{kj}x_{il} \,.$$

quasi-...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Double Poisson bracket

 $\mathsf{Recall}\ d = d' \otimes d'' \in A^{\otimes 2} \text{ (notation)} \rightsquigarrow \{\!\!\{a, b\}\!\!\} = \{\!\!\{a, b\}\!\!\}' \otimes \{\!\!\{a, b\}\!\!\}'$

From a double bracket $\{\!\{-,-\}\!\}$, define $\{\!\{-,-,-\}\!\}: A^{\times 3} \to A^{\otimes 3}$

$$\begin{split} \{\!\!\{a, b, c\}\!\!\} &= \{\!\!\{a, \{\!\!\{b, c\}\!\!\}'\}\!\} \otimes \{\!\!\{b, c\}\!\!\}'' \\ &+ \tau_{(123)} \{\!\!\{b, \{\!\!\{c, a\}\!\!\}'\}\!\} \otimes \{\!\!\{c, a\}\!\!\}'' \\ &+ \tau_{(132)} \{\!\!\{c, \{\!\!\{a, b\}\!\!\}'\}\!\} \otimes \{\!\!\{a, b\}\!\!\}'', \quad \forall a, b, c \in A \end{split}$$

quasi-...

Double Poisson bracket

 $\mathsf{Recall}\ d = d' \otimes d'' \in A^{\otimes 2} \text{ (notation)} \rightsquigarrow \{\!\!\{a, b\}\!\!\} = \{\!\!\{a, b\}\!\!\}' \otimes \{\!\!\{a, b\}\!\!\}'$

From a double bracket $\{\!\{-,-\}\!\}$, define $\{\!\{-,-,-\}\!\}: A^{\times 3} \to A^{\otimes 3}$

$$\{\!\!\{a, b, c\}\!\!\} = \{\!\!\{a, \{\!\!\{b, c\}\!\!\}'\}\!\} \otimes \{\!\!\{b, c\}\!\!\}'' \\ + \tau_{(123)} \{\!\!\{b, \{\!\!\{c, a\}\!\!\}'\}\!\} \otimes \{\!\!\{c, a\}\!\!\}'' \\ + \tau_{(132)} \{\!\!\{c, \{\!\!\{a, b\}\!\!\}'\}\!\} \otimes \{\!\!\{a, b\}\!\!\}'', \quad \forall a, b, c \in A$$

Definition

A double bracket $\{\!\{-,-\}\!\}$ is *Poisson* if $\{\!\{-,-,-\}\!\}: A^{\times 3} \to A^{\otimes 3}$ vanishes. We say $(A, \{\!\{-,-\}\!\})$ is a *double Poisson algebra*.

quasi-...

Double Poisson bracket

 $\mathsf{Recall}\ d = d' \otimes d'' \in A^{\otimes 2} \text{ (notation)} \rightsquigarrow \{\!\!\{a, b\}\!\!\} = \{\!\!\{a, b\}\!\!\}' \otimes \{\!\!\{a, b\}\!\!\}'$

From a double bracket $\{\!\{-,-\}\!\}$, define $\{\!\{-,-,-\}\!\}: A^{\times 3} \to A^{\otimes 3}$

$$\{\!\!\{a, b, c\}\!\!\} = \{\!\!\{a, \{\!\!\{b, c\}\!\!\}'\}\!\} \otimes \{\!\!\{b, c\}\!\!\}'' \\ + \tau_{(123)} \{\!\!\{b, \{\!\!\{c, a\}\!\!\}'\}\!\} \otimes \{\!\!\{c, a\}\!\!\}'' \\ + \tau_{(132)} \{\!\!\{c, \{\!\!\{a, b\}\!\!\}'\}\!\} \otimes \{\!\!\{a, b\}\!\!\}'', \quad \forall a, b, c \in A$$

Definition

A double bracket $\{\!\{-,-\}\!\}$ is *Poisson* if $\{\!\{-,-,-\}\!\}: A^{\times 3} \to A^{\otimes 3}$ vanishes. We say $(A, \{\!\{-,-\}\!\})$ is a *double Poisson algebra*.

Example

1.
$$A = \mathbb{C}[x], \{\!\{x, x\}\!\} = x \otimes 1 - 1 \otimes x.$$

2. $A = \mathbb{C}\langle x, y \rangle, \{\!\{x, x\}\!\} = 0 = \{\!\{y, y\}\!\}, \{\!\{x, y\}\!\} = 1 \otimes 1.$

quasi-...

A first result

(notation) $\rightsquigarrow \{\!\!\{a, b\}\!\!\} = \{\!\!\{a, b\}\!\!\}' \otimes \{\!\!\{a, b\}\!\!\}''$

Proposition (Van den Bergh,'08)

If A has a double bracket $\{\!\{-,-\}\!\}$, then $\mathbb{C}[\operatorname{Rep}(A,n)]$ has a unique antisymmetric biderivation $\{-,-\}_{\mathbb{P}}$ satisfying

$$\{a_{ij}, b_{kl}\}_{\mathbf{P}} = \{\!\!\{a, b\}\!\!\}'_{kj} \{\!\!\{a, b\}\!\!\}'_{il} .$$

If $\{\!\!\{-,-\}\!\!\}$ is Poisson, then $\{-,-\}_{\scriptscriptstyle P}$ is a Poisson bracket.

quasi-...

A first result

(notation) $\rightsquigarrow \{\!\!\{a,b\}\!\!\} = \{\!\!\{a,b\}\!\!\}' \otimes \{\!\!\{a,b\}\!\!\}''$

Proposition (Van den Bergh,'08)

If A has a double bracket $\{\!\{-,-\}\!\}$, then $\mathbb{C}[\operatorname{Rep}(A,n)]$ has a unique antisymmetric biderivation $\{-,-\}_{\mathbb{P}}$ satisfying

$${a_{ij}, b_{kl}}_{\mathrm{P}} = \{\!\!\{a, b\}\!\!\}'_{kj} \{\!\!\{a, b\}\!\!\}''_{il}$$

If $\{\!\!\{-,-\}\!\!\}$ is Poisson, then $\{-,-\}_{_P}$ is a Poisson bracket.

Example

$$\begin{split} A &= \mathbb{C} \langle x, y \rangle, \ \{\!\!\{x, x\}\!\!\} = 0 = \{\!\!\{y, y\}\!\!\}, \ \{\!\!\{x, y\}\!\!\} = 1 \otimes 1 \text{ endows} \\ \mathfrak{gl}_n(\mathbb{C})^{\times 2} &= \mathbb{C}[\operatorname{Rep}(A, n)] \text{ with} \\ &\{x_{ij}, y_{kl}\}_{\mathrm{P}} = \delta_{kj}\delta_{il}, \quad \{x_{ij}, x_{kl}\}_{\mathrm{P}} = 0 = \{y_{ij}, y_{kl}\}_{\mathrm{P}} \end{split}$$

This is the canonical Poisson bracket on $T^*\mathfrak{gl}_n$.

quasi-...

A first dictionary

Algebra A

double bracket $\{\!\{-,-\}\!\}$

double Poisson bracket $\{\!\!\{-,-\}\!\!\}$

Geometry $\mathbb{C}[\operatorname{Rep}(A, n)]$

anti-symmetric biderivation $\{-,-\}_{\scriptscriptstyle \mathrm{P}}$

Poisson bracket $\{-,-\}_{P}$

Double brackets

Morphisms

quasi-...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hamiltonian reduction

Definition

If $(A, \{\!\{-,-\}\!\})$ is a double Poisson algebra, $\mu_A \in A$ is a moment map if $\{\!\{\mu_A, a\}\!\} = a \otimes 1 - 1 \otimes a, \forall a \in A$

quasi-...

Hamiltonian reduction

Definition

If $(A, \{\!\{-,-\}\!\})$ is a double Poisson algebra, $\mu_A \in A$ is a moment map if $\{\!\{\mu_A, a\}\!\} = a \otimes 1 - 1 \otimes a, \forall a \in A$

For any $\lambda \in \mathbb{C}$, $\{\mu_A - \lambda, a\} = 0$, where $\{-, -\} = \mathsf{m} \circ \{\!\!\{-, -\}\!\!\}$

quasi-...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hamiltonian reduction

Definition

If
$$(A, \{\!\!\{-,-\}\!\!\})$$
 is a double Poisson algebra,
 $\mu_A \in A$ is a *moment map* if $\{\!\!\{\mu_A, a\}\!\!\} = a \otimes 1 - 1 \otimes a, \forall a \in A$

For any
$$\lambda\in\mathbb{C}$$
, $\{\mu_{A}-\lambda,a\}=0$, where $\{-,-\}=\mathsf{m}\circ\{\!\!\{-,-\}\!\!\}$

 $\Rightarrow \{-,-\} \text{ descends to a Lie bracket on the vector space } A_\lambda/[A_\lambda,A_\lambda] \text{ for } A_\lambda:=A/\langle \mu_A-\lambda\rangle$

quasi-...

Hamiltonian reduction

Definition

If
$$(A, \{\!\!\{-,-\}\!\!\})$$
 is a double Poisson algebra,
 $\mu_A \in A$ is a *moment map* if $\{\!\!\{\mu_A, a\}\!\!\} = a \otimes 1 - 1 \otimes a, \forall a \in A$

For any
$$\lambda\in\mathbb{C}$$
, $\{\mu_{A}-\lambda,a\}=0$, where $\{-,-\}=\mathsf{m}\circ\{\!\!\{-,-\}\!\!\}$

$$\Rightarrow \{-,-\} \text{ descends to a Lie bracket on the vector space} \\ A_{\lambda}/[A_{\lambda},A_{\lambda}] \text{ for } A_{\lambda} := A/\langle \mu_A - \lambda \rangle$$

Proposition (Van den Bergh,'08)

The Poisson structure $\{-,-\}_{P}$ on $\operatorname{Rep}(A,n)$ descends to $\operatorname{Rep}(A_{\lambda},n)//\operatorname{GL}_n$ in such a way that

$$\left\{\operatorname{tr} \mathcal{X}(a), \operatorname{tr} \mathcal{X}(b)\right\}_{\mathrm{P}} = \operatorname{tr} \mathcal{X}(\{a, b\}) \,.$$

(3)

quasi-...

Dictionary

Algebra A

Geometry $\mathbb{C}[\operatorname{Rep}(A, n)]$

double bracket $\{\!\{-,-\}\!\}$

double Poisson bracket $\{\!\!\{-,-\}\!\!\}$

anti-symmetric biderivation $\{-,-\}_{\rm P}$

Poisson bracket $\{-,-\}_{P}$

moment map μ_A $A_{\lambda} = A/(\mu_A - \lambda), \ \lambda \in \mathbb{C}$ $(A_{\lambda}/[A_{\lambda}, A_{\lambda}], \{-, -\})$ is a Lie algebra $\begin{array}{l} \text{moment map } \mathcal{X}(\mu_A) \\ \text{slice } S_\lambda := \mathcal{X}(\mu_A)^{-1}(\lambda \operatorname{Id}_n) \\ \{-,-\}_{\operatorname{P}} \text{ is Poisson on } \mathbb{C}[S_\lambda /\!/\operatorname{GL}_n] \end{array}$

Recall $\{-,-\} = m \circ \{\!\!\{-,-\}\!\!\}$ descends to $A_{\lambda}/[A_{\lambda},A_{\lambda}]$

quasi-...

Examples from quivers

Fix quiver Q, with double \bar{Q} (if $a \in Q$, $a: t \to h$, add $a^*: h \to t$)

Theorem (Van den Bergh,'08)

The algebra $A = \mathbb{C}\bar{Q}$ has a double Poisson bracket given by

 $\{\!\!\{a, a^*\}\!\!\} = e_{h(a)} \otimes e_{t(a)} \ \forall a \in Q, \quad \{\!\!\{a, b\}\!\!\} = 0 \ \text{if } a \neq b^*, b \neq a^* \qquad (4)$

and (non-commutative) moment map $\mu = \sum_{a \in Q} [a, a^*]$.

quasi-...

Examples from quivers

Fix quiver Q, with double \bar{Q} (if $a \in Q$, $a: t \to h$, add $a^*: h \to t$)

Theorem (Van den Bergh,'08)

The algebra $A = \mathbb{C}\bar{Q}$ has a double Poisson bracket given by

 $\{\!\!\{a, a^*\}\!\!\} = e_{h(a)} \otimes e_{t(a)} \ \forall a \in Q, \quad \{\!\!\{a, b\}\!\!\} = 0 \ \text{if } a \neq b^*, b \neq a^* \qquad (4)$

and (non-commutative) moment map $\mu = \sum_{a \in Q} [a, a^*]$.

• Fix a dimension vector $\alpha \in \mathbb{N}^{I}$. Attach $\mathbb{C}^{\alpha_{s}}$ to vertex $s \in I$ of \bar{Q}

quasi-...

Examples from quivers

Fix quiver Q, with double \bar{Q} (if $a \in Q$, $a: t \to h$, add $a^*: h \to t$)

Theorem (Van den Bergh,'08)

The algebra $A = \mathbb{C}\bar{Q}$ has a double Poisson bracket given by

 $\{\!\!\{a, a^*\}\!\!\} = e_{h(a)} \otimes e_{t(a)} \ \forall a \in Q, \quad \{\!\!\{a, b\}\!\!\} = 0 \ \text{if } a \neq b^*, b \neq a^* \qquad (4)$

and (non-commutative) moment map $\mu = \sum_{a \in Q} [a, a^*]$.

• Fix a dimension vector $\alpha \in \mathbb{N}^{I}$. Attach $\mathbb{C}^{\alpha_{s}}$ to vertex $s \in I$ of \overline{Q}

 \implies Rep $(\mathbb{C}\bar{Q}, \alpha)$ has a Poisson structure (with 'usual' moment map)

quasi-...

Examples from quivers

Fix quiver Q, with double \bar{Q} (if $a \in Q$, $a: t \to h$, add $a^*: h \to t$)

Theorem (Van den Bergh,'08)

The algebra $A = \mathbb{C}\bar{Q}$ has a double Poisson bracket given by

 $\{\!\!\{a, a^*\}\!\!\} = e_{h(a)} \otimes e_{t(a)} \ \forall a \in Q, \quad \{\!\!\{a, b\}\!\!\} = 0 \ \text{if } a \neq b^*, b \neq a^* \qquad (4)$

and (non-commutative) moment map $\mu = \sum_{a \in Q} [a, a^*]$.

• Fix a dimension vector $\alpha \in \mathbb{N}^{I}$. Attach $\mathbb{C}^{\alpha_{s}}$ to vertex $s \in I$ of \bar{Q}

 \implies Rep($\mathbb{C}\bar{Q}, \alpha$) has a Poisson structure (with 'usual' moment map) \implies Poisson structure on quiver varieties by Hamiltonian reduction on

$$\left\{\sum_{a\in Q} [\mathcal{X}(a), \mathcal{X}(a^*)] = \prod_{s\in I} \lambda_s \operatorname{Id}_{\alpha_s} \right\} / / \operatorname{GL}(\alpha) \simeq \underbrace{\operatorname{Rep}(\Pi^{\lambda}(Q), \alpha) / / \operatorname{GL}(\alpha)}_{\mathcal{M}_{\alpha, \lambda}^{\Pi}(Q)}$$

quasi-...

Nice example : CM spaces

$$\{\!\!\{x, y\}\!\!\} = e_0 \otimes e_0 \{\!\!\{v, w\}\!\!\} = e_0 \otimes e_\infty (\{\!\!\{a, b\}\!\!\} = 0 \text{ if } a \neq b^*, b \neq a^*) \mu = [x, y] + [v, w]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

quasi-...

Nice example : CM spaces

$$\{\!\!\{x, y\}\!\!\} = e_0 \otimes e_0$$

$$\{\!\!\{v, w\}\!\!\} = e_0 \otimes e_\infty$$

$$(\{\!\!\{a, b\}\!\!\} = 0 \text{ if } a \neq b^*, b \neq a^*)$$

$$\mu = [x, y] + [v, w]$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

1. Take $(\alpha_0, \alpha_\infty) = (n, 1), n \ge 1$; Attach \mathbb{C}^n at 0, \mathbb{C} at ∞ 2. $x, y, v, w \rightarrow X, Y \in \operatorname{Mat}_{n \times n}, V \in \operatorname{Mat}_{1 \times n}, W \in \operatorname{Mat}_{n \times 1}$ 3. $\{\!\{-, -\}\!\} \rightarrow \{X_{ij}, Y_{kl}\} = \delta_{kj}\delta_{il}, \{V_j, W_k\} = \delta_{kj}$ 4. $\mu = [x, y] + [v, w]$ restricts to $[x, y] - wv \in e_0\mathbb{C}\bar{Q}_1e_0$ $\rightsquigarrow [X, Y] - WV$ is moment map for $\operatorname{GL}_n \curvearrowright \mathbb{C}^n \hookrightarrow \mathbb{C}^n \oplus \mathbb{C}$

quasi-...

Nice example : CM spaces

$$\{\!\!\{x, y\}\!\!\} = e_0 \otimes e_0$$

$$\{\!\!\{v, w\}\!\!\} = e_0 \otimes e_\infty$$

$$(\{\!\!\{a, b\}\!\!\} = 0 \text{ if } a \neq b^*, b \neq a^*)$$

$$\mu = [x, y] + [v, w]$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

1. Take $(\alpha_0, \alpha_\infty) = (n, 1), n \ge 1$; Attach \mathbb{C}^n at $0, \mathbb{C}$ at ∞ 2. $x, y, v, w \to X, Y \in \operatorname{Mat}_{n \times n}, V \in \operatorname{Mat}_{1 \times n}, W \in \operatorname{Mat}_{n \times 1}$ 3. $\{\!\{-, -\}\!\} \to \{X_{ij}, Y_{kl}\} = \delta_{kj}\delta_{il}, \{V_j, W_k\} = \delta_{kj}$ 4. $\mu = [x, y] + [v, w]$ restricts to $[x, y] - wv \in e_0\mathbb{C}\bar{Q}_1e_0$ $\rightsquigarrow [X, Y] - WV$ is moment map for $\operatorname{GL}_n \curvearrowright \mathbb{C}^n \hookrightarrow \mathbb{C}^n \oplus \mathbb{C}$ Hamiltonian reduction at $\operatorname{Id}_n : \mathcal{C}_n = \{[X, Y] - WV = \operatorname{Id}_n\}//\operatorname{GL}_n$

quasi-...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Plan for the talk

- Motivation
- Ouble brackets
- **1 Morphisms of double Poisson brackets**
- The "quasi-" case

Definition I

(mostly based on [F., 2008.01409] from now on)

 $A_1, A_2 \text{ endowed with double brackets } \{\!\!\{-, -\}\!\!\}_1, \{\!\!\{-, -\}\!\!\}_2.$

Definition

 $\phi: A_1 \to A_2$ is a morphism of double brackets if it is an algebra homomorphism such that for any $a, b \in A_1$ $\{\!\!\{\phi(a), \phi(b)\}\!\!\}_2 = (\phi \otimes \phi) \{\!\!\{a, b\}\!\!\}_1$.

Definition I

(mostly based on [F., 2008.01409] from now on)

 $A_1, A_2 \text{ endowed with double brackets } \{\!\!\{-, -\}\!\!\}_1, \{\!\!\{-, -\}\!\!\}_2.$

Definition

 $\phi:A_1\to A_2$ is a morphism of double brackets if it is an algebra homomorphism such that for any $a,b\in A_1$

 $\{\!\!\{\phi(a),\phi(b)\}\!\!\}_2 = (\phi\otimes\phi)\,\{\!\!\{a,b\}\!\!\}_1\;.$

Example

$$\begin{split} A &= \mathbb{C} \langle x, y \rangle \text{ can be endowed with} \\ &\{\!\!\{x, x\}\!\!\}_1 = 0 = \{\!\!\{x, x\}\!\!\}_2 \ , \quad \{\!\!\{y, y\}\!\!\}_1 = 0 = \{\!\!\{y, y\}\!\!\}_2 \ , \\ &\{\!\!\{x, y\}\!\!\}_1 = 1 \otimes 1, \ \{\!\!\{x, y\}\!\!\}_2 = -1 \otimes 1 \ . \end{split}$$
Automorphism $x \mapsto y, y \mapsto x$ defines an isomorphism of double brackets $(A, \{\!\!\{-, -\}\!\!\}_1) \to (A, \{\!\!\{-, -\}\!\!\}_2)$ **Double brackets**

Morphisms

Definition II

 $\begin{array}{l} A_1, A_2 \text{ endowed with double brackets } \{\!\!\{-, -\}\!\!\}_1, \{\!\!\{-, -\}\!\!\}_2. \\ \phi: A_1 \to A_2 \text{ is a morphism of double brackets } : \{\!\!\{\phi(a), \phi(b)\}\!\!\}_2 = (\phi \otimes \phi) \{\!\!\{a, b\}\!\!\}_1 \end{array}$

Definition II

 $\begin{array}{l} A_1, A_2 \text{ endowed with double brackets } \{\!\!\{-, -\}\!\!\}_1, \{\!\!\{-, -\}\!\!\}_2. \\ \phi : A_1 \to A_2 \text{ is a morphism of double brackets } : \{\!\!\{\phi(a), \phi(b)\}\!\!\}_2 = (\phi \otimes \phi) \{\!\!\{a, b\}\!\!\}_1 \end{array}$

Definition

If A_1, A_2 are double Poisson algebras, ϕ is a morphism of double Poisson algebras.

If A_1, A_2 admit moment maps μ_1, μ_2 and $\phi(\mu_1) = \mu_2$, we say that ϕ is a morphism of Hamiltonian algebras.

Definition II

 $\begin{array}{l} A_1, A_2 \text{ endowed with double brackets } \{\!\!\{-, -\}\!\!\}_1, \{\!\!\{-, -\}\!\!\}_2. \\ \phi : A_1 \to A_2 \text{ is a morphism of double brackets } : \{\!\!\{\phi(a), \phi(b)\}\!\!\}_2 = (\phi \otimes \phi) \{\!\!\{a, b\}\!\!\}_1 \end{array}$

Definition

If A_1, A_2 are double Poisson algebras, ϕ is a morphism of double Poisson algebras.

If A_1, A_2 admit moment maps μ_1, μ_2 and $\phi(\mu_1) = \mu_2$, we say that ϕ is a morphism of Hamiltonian algebras.

→ induces Poisson morphisms on Poisson varieties :

1. $\phi_n : \operatorname{Rep}(A_1, n) \to \operatorname{Rep}(A_2, n),$ given by $\phi_n(\mathcal{X}(a)) = \mathcal{X}(\phi(a))$ s.t. $\phi_n(\mathcal{X}(\mu_1)) = \mathcal{X}(\mu_2)$

Definition II

 $\begin{array}{l} A_1, A_2 \text{ endowed with double brackets } \{\!\!\{-, -\}\!\!\}_1, \{\!\!\{-, -\}\!\!\}_2. \\ \phi : A_1 \to A_2 \text{ is a morphism of double brackets } : \{\!\!\{\phi(a), \phi(b)\}\!\!\}_2 = (\phi \otimes \phi) \{\!\!\{a, b\}\!\!\}_1 \end{array}$

Definition

If A_1, A_2 are double Poisson algebras, ϕ is a morphism of double Poisson algebras.

If A_1, A_2 admit moment maps μ_1, μ_2 and $\phi(\mu_1) = \mu_2$, we say that ϕ is a morphism of Hamiltonian algebras.

→ induces Poisson morphisms on Poisson varieties :

1. $\phi_n : \operatorname{Rep}(A_1, n) \to \operatorname{Rep}(A_2, n),$ given by $\phi_n(\mathcal{X}(a)) = \mathcal{X}(\phi(a))$ s.t. $\phi_n(\mathcal{X}(\mu_1)) = \mathcal{X}(\mu_2)$

2. $\bar{\phi}_n^{\lambda} : \mathcal{X}(\mu_1)^{-1}(\lambda \operatorname{Id}_n) / / \operatorname{GL}_n \to \mathcal{X}(\mu_2)^{-1}(\lambda \operatorname{Id}_n) / / \operatorname{GL}_n$ given by $\bar{\phi}_n^{\lambda}(\operatorname{tr} \mathcal{X}(a)) = \operatorname{tr} \mathcal{X}(\phi(a))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Morphism for quivers : reversing the arrow

Morphism for quivers : reversing the arrow

By [VdB,'08], $\mathbb{C}\bar{Q}_{-}/\mathbb{C}\bar{Q}_{-}^{op}$ is a Hamiltonian algebra for

$$\begin{array}{ccc} \underline{\mathbb{C}}\bar{Q}_{-}: & \{\!\!\{a,a\}\!\!\} = 0 = \{\!\!\{a^*,a^*\}\!\!\} \ , & \{\!\!\{a,a^*\}\!\!\} = e_2 \otimes e_1 \ , \ \mu = [a,a^*] \ , \\ \underline{\mathbb{C}}\bar{Q}_{-}^{op}: & \{\!\!\{b,b\}\!\!\}' = 0 = \{\!\!\{b^*,b^*\}\!\!\}' \ , & \{\!\!\{b,b^*\}\!\!\}' = e_1 \otimes e_2 \ , \ \mu' = [b,b^*] \ . \end{array}$$

Morphism for quivers : reversing the arrow

By [VdB,'08], $\mathbb{C}\bar{Q}_{-}/\mathbb{C}\bar{Q}_{-}^{op}$ is a Hamiltonian algebra for

$$\begin{array}{ll} \underline{\mathbb{C}}\bar{Q}_{-}: & \{\!\!\{a,a\}\!\!\} = 0 = \{\!\!\{a^*,a^*\}\!\!\} , & \{\!\!\{a,a^*\}\!\!\} = e_2 \otimes e_1 , \ \mu = [a,a^*] , \\ \\ \underline{\mathbb{C}}\bar{Q}_{-}^{op}: & \{\!\!\{b,b\}\!\!\}' = 0 = \{\!\!\{b^*,b^*\}\!\!\}' , & \{\!\!\{b,b^*\}\!\!\}' = e_1 \otimes e_2 , \ \mu' = [b,b^*] . \end{array}$$

 $\phi: \mathbb{C}\bar{Q}_- \to \mathbb{C}\bar{Q}_-^{op}$ given by $\phi(a) = b^*$, $\phi(a^*) = -b$, is an isomorphism of Hamiltonian algebras.

 ϕ lifts the isomorphism of preprojective algebras [Crawley-Boevey,Holland,'98] \rightsquigarrow Poisson isomorphism $\bar{\phi}^{\lambda}_{\alpha}: \mathcal{M}^{\Pi}_{\alpha,\lambda}(Q_{-}) \to \mathcal{M}^{\Pi}_{\alpha,\lambda}(Q_{-}^{op})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fusion

Any quiver Q can be obtained by taking |Q| copies of $Q_-:\bullet\longrightarrow\bullet$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fusion

Any quiver Q can be obtained by taking |Q| copies of $Q_-:\bullet\longrightarrow\bullet$

Fusion

Any quiver Q can be obtained by taking |Q| copies of $Q_-:\bullet\longrightarrow\bullet$

By "doubling", \bar{Q} is obtained from |Q| copies of \bar{Q}_-

Fusion

Any quiver Q can be obtained by taking |Q| copies of $Q_-:\bullet\longrightarrow\bullet$

By "doubling", $ar{Q}$ is obtained from |Q| copies of $ar{Q}_-$

The analogous construction at the algebra level is called fusion [VdB,'08] It consists of identifying orthogonal idempotents in the algebra

 \rightsquigarrow can obtain $\mathbb{C}\bar{Q}$ from |Q| copies of $\mathbb{C}\bar{Q}_-$ by fusion of the idempotents corresponding to the identified vertices

quasi-...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fusion and morphisms

Lemma

Fusion is compatible with morphisms of double (Poisson) brackets

quasi-...

Fusion and morphisms

Lemma

Fusion is compatible with morphisms of double (Poisson) brackets

Example $(Q_- : 1 \xrightarrow{a} 2, Q_-^{op} : 2 \xrightarrow{b} 1)$

Fusion of the idempotents in $\mathbb{C}\bar{Q}_-$ or $\mathbb{C}\bar{Q}_-^{op}$ results in the free algebra $\mathbb{C}\langle a,a^*\rangle$ or $\mathbb{C}\langle b,b^*\rangle$

Under identification with $\mathbb{C}\langle x,y\rangle$ through $a,b\leftrightarrow x$ and $a^*,b^*\leftrightarrow y$, we get the Hamiltonian algebra structure

$$\{\!\!\{x,x\}\!\!\}=0=\{\!\!\{y,y\}\!\!\}\ ,\quad \{\!\!\{x,y\}\!\!\}=1\otimes 1\,,\ \mu=[x,y]\!\!$$

quasi-...

Fusion and morphisms

Lemma

Fusion is compatible with morphisms of double (Poisson) brackets

Example $(Q_-: 1 \xrightarrow{a} 2, Q_-^{op}: 2 \xrightarrow{b} 1)$

Fusion of the idempotents in $\mathbb{C}\bar{Q}_-$ or $\mathbb{C}\bar{Q}_-^{op}$ results in the free algebra $\mathbb{C}\langle a,a^*\rangle$ or $\mathbb{C}\langle b,b^*\rangle$

Under identification with $\mathbb{C}\langle x,y\rangle$ through $a,b\leftrightarrow x$ and $a^*,b^*\leftrightarrow y$, we get the Hamiltonian algebra structure

$$\{\!\!\{x,x\}\!\!\} = 0 = \{\!\!\{y,y\}\!\!\} \ , \quad \{\!\!\{x,y\}\!\!\} = 1 \otimes 1 \ , \ \mu = [x,y]$$

The isomorphism $\phi : \mathbb{C}\bar{Q}_{-} \to \mathbb{C}\bar{Q}_{-}^{op}$ given by $\phi(a) = b^*$, $\phi(a^*) = -b$ becomes an automorphism (of Hamiltonian algebras) on $\mathbb{C}\langle x, y \rangle$ given by $x \mapsto y$, $y \mapsto -x$.

Motivation

Double brackets

Morphisms

quasi-...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Isomorphic quiver varieties

Proposition

 $\mathcal{M}^{\Pi}_{\alpha,\lambda}(Q)$ only depends on α, λ and Q seen as an undirected graph, up to isomorphism of Poisson varieties

Motivation

Morphisms

quasi-...

Isomorphic quiver varieties

Proposition

 $\mathcal{M}^{\Pi}_{\alpha,\lambda}(Q)$ only depends on α, λ and Q seen as an undirected graph, up to isomorphism of Poisson varieties

Proof.

It suffices to get that the Hamiltonian algebra structure on $\mathbb{C}\bar{Q}$ given by Van den Bergh only depends on Q seen as an undirected graph, up to isomorphism.

Motivation

Morphisms

quasi-...

Isomorphic quiver varieties

Proposition

 $\mathcal{M}^{\Pi}_{\alpha,\lambda}(Q)$ only depends on α, λ and Q seen as an undirected graph, up to isomorphism of Poisson varieties

Proof.

It suffices to get that the Hamiltonian algebra structure on $\mathbb{C}\bar{Q}$ given by Van den Bergh only depends on Q seen as an undirected graph, up to isomorphism.

This follows from the case of Q_{-} by fusion.

A question

The morphism giving that "the Hamiltonian algebra structure on $\mathbb{C}\bar{Q}$ given by Van den Bergh only depends on Q seen as an undirected graph" is obtained by lifting the corresponding isomorphism of (deformed) preprojective algebras $\Pi^{\lambda}(Q) = \mathbb{C}\bar{Q}/\langle \sum_{a}[a,a^*] - \lambda \rangle$ given in [CBH,'98]

A question

The morphism giving that "the Hamiltonian algebra structure on $\mathbb{C}\bar{Q}$ given by Van den Bergh only depends on Q seen as an undirected graph" is obtained by lifting the corresponding isomorphism of (deformed) preprojective algebras $\Pi^{\lambda}(Q) = \mathbb{C}\bar{Q}/\langle \sum_{a}[a, a^*] - \lambda \rangle$ given in [CBH,'98]

Question

When can we lift an automorphism of $\Pi^{\lambda}(Q)$ to an automorphism of Hamiltonian algebras on $\mathbb{C}\overline{Q}$? (for a fixed pair $(\{\!\{-,-\}\!\},\mu)$)

A question

The morphism giving that "the Hamiltonian algebra structure on $\mathbb{C}\bar{Q}$ given by Van den Bergh only depends on Q seen as an undirected graph" is obtained by lifting the corresponding isomorphism of (deformed) preprojective algebras $\Pi^{\lambda}(Q) = \mathbb{C}\bar{Q}/\langle \sum_{a}[a, a^*] - \lambda \rangle$ given in [CBH,'98]

Question

When can we lift an automorphism of $\Pi^{\lambda}(Q)$ to an automorphism of Hamiltonian algebras on $\mathbb{C}\overline{Q}$? (for a fixed pair $(\{\!\{-,-\}\!\},\mu)$)

Example (first Weyl algebra $A_1 = \mathbb{C}\langle x, y \rangle / \langle xy - yx - 1 \rangle$)

 A_1 is isomorphic to $\Pi^1(Q_\circ)$ for Q_\circ the one-loop quiver. Following [Dixmier,'68], automorphisms of A_1 are generated by

$$\phi_{k,\gamma}(x) = x + \gamma y^k, \ \phi_{k,\gamma}(y) = y, \quad \phi'_{k,\gamma}(x) = x, \ \phi'_{k,\gamma}(y) = y + \gamma x^k$$

They can be lifted as Hamiltonian algebras automorphisms on $\mathbb{C}\bar{Q}_{\circ}$ (!)

quasi-...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Plan for the talk

- Motivation
- Ouble brackets
- O Morphisms of double Poisson brackets
- The "quasi-" case

Double brackets

Morphisms

quasi-...

quasi-Dictionary

$$\{-,-\}=\mathsf{m}\circ\{\!\!\{-,-\}\!\!\}$$
 descends to $A_q/[A_q,A_q]$

Algebra A

Geometry $\mathbb{C}[\operatorname{Rep}(A, n)]$

double bracket $\{\!\{-,-\}\!\}$

double quasi-Poisson bracket $\{\!\{-,-\}\!\}$

$$\begin{split} & \text{multiplicative moment map } \Phi_A \\ & A_q = A/(\Phi_A - q), \ q \in \mathbb{C}^\times \\ & (A_q/[A_q,A_q],\{-,-\}) \text{ is Lie algebra} \end{split}$$

anti-symmetric biderivation $\{-,-\}_{\scriptscriptstyle \mathrm{P}}$

quasi-Poisson bracket $\{-,-\}_{P}$

multiplicative moment map $\mathcal{X}(\Phi_A)$ slice $S_q := \mathcal{X}(\Phi_A)^{-1}(q \operatorname{Id}_n)$ $\{-,-\}_{P}$ is Poisson on $\mathbb{C}[S_q//\operatorname{GL}_n]$

quasi-Poisson geometry after [Alekseev – Kosmann-Schwarzbach – Meinrenken,'02]

quasi-...

Examples from quivers

Fix quiver Q. Let $A_Q = \mathbb{C}\bar{Q}_S$ localisation at $S = \{1 + aa^* \mid a \in \bar{Q}\}$

Theorem (Van den Bergh,'08)

 $\begin{array}{l} \mbox{The algebra } A_Q \mbox{ has a double quasi-Poisson bracket whose} \\ \mbox{(non-commutative) multiplicative moment map is given by} \\ \Phi = \prod_{\mbox{\tiny order}} (1+aa^*)(1+a^*a)^{-1} & (\mbox{It depends on an order !}) \end{array}$

quasi-...

Examples from quivers

Fix quiver Q. Let $A_Q = \mathbb{C}\bar{Q}_S$ localisation at $S = \{1 + aa^* \mid a \in \bar{Q}\}$

Theorem (Van den Bergh,'08)

The algebra A_Q has a double quasi-Poisson bracket whose (non-commutative) multiplicative moment map is given by $\Phi = \prod_{\text{order}} (1 + aa^*)(1 + a^*a)^{-1}$ (It depends on an order !)

• Fix a dimension vector $\alpha \in \mathbb{N}^I$, attach \mathbb{C}^{α_s} to vertex $s \in I$ of \overline{Q} $\implies \operatorname{Rep}(A_Q, \alpha)$ has quasi-Poisson structure (mult. mom. map $\mathcal{X}(\Phi)$)

quasi-...

Examples from quivers

Fix quiver Q. Let $A_Q = \mathbb{C}\bar{Q}_S$ localisation at $S = \{1 + aa^* \mid a \in \bar{Q}\}$

Theorem (Van den Bergh,'08)

The algebra A_Q has a double quasi-Poisson bracket whose (non-commutative) multiplicative moment map is given by $\Phi = \prod_{\text{order}} (1 + aa^*)(1 + a^*a)^{-1}$ (It depends on an order !)

- Fix a dimension vector $\alpha \in \mathbb{N}^I$, attach \mathbb{C}^{α_s} to vertex $s \in I$ of \bar{Q}
- $\implies \operatorname{Rep}(A_Q, \alpha)$ has quasi-Poisson structure (mult. mom. map $\mathcal{X}(\Phi)$)
- \implies Poisson structure on multiplicative quiver varieties by quasi-Hamiltonian reduction on

$$\left\{ \mathcal{X}(\Phi) = \prod_{s \in I} q_s \operatorname{Id}_{\alpha_s} \right\} / / \operatorname{GL}(\alpha) \simeq \underbrace{\operatorname{Rep}(\Lambda^q(Q), \alpha) / / \operatorname{GL}(\alpha)}_{\mathcal{M}^{\Lambda}_{\alpha, q}(Q)}$$

Fusion and Van den Bergh's proof

By fusion, we obtained $\mathbb{C}\bar{Q}$ from |Q| copies of $\mathbb{C}\bar{Q}_{-}$ Similarly, we can obtain A_Q from |Q| copies of $A_{Q_{-}}$ ('localised' version)

Fusion and Van den Bergh's proof

By fusion, we obtained $\mathbb{C}\bar{Q}$ from |Q| copies of $\mathbb{C}\bar{Q}_{-}$ Similarly, we can obtain A_Q from |Q| copies of A_{Q-} ('localised' version)

<u>Problem</u>: If $\{\!\{-,-\}\!\}$ is a double quasi-Poisson bracket on A, its image after fusion is <u>not</u> a double quasi-Poisson bracket

Fusion and Van den Bergh's proof

By fusion, we obtained $\mathbb{C}\bar{Q}$ from |Q| copies of $\mathbb{C}\bar{Q}_{-}$ Similarly, we can obtain A_Q from |Q| copies of A_{Q-} ('localised' version)

<u>Problem:</u> If $\{\!\!\{-,-\}\!\!\}$ is a double quasi-Poisson bracket on A, its image after fusion is <u>not</u> a double quasi-Poisson bracket

<u>Solution:</u> add an extra part to the double bracket See [VdB,'08] and in general [F.,AlgRepTh'??]; NC versions of [AKSM,'02]

Fusion and Van den Bergh's proof

By fusion, we obtained $\mathbb{C}\bar{Q}$ from |Q| copies of $\mathbb{C}\bar{Q}_{-}$ Similarly, we can obtain A_Q from |Q| copies of A_{Q-} ('localised' version)

<u>Problem:</u> If $\{\!\!\{-,-\}\!\!\}$ is a double quasi-Poisson bracket on A, its image after fusion is <u>not</u> a double quasi-Poisson bracket

<u>Solution:</u> add an extra part to the double bracket See [VdB,'08] and in general [F.,AlgRepTh'??]; NC versions of [AKSM,'02]

<u>Drawback</u>: the structure depends on the order of the fusion : the fusions $e_i \rightarrow e_j$ or $e_j \rightarrow e_i$ give isomorphic algebras, but different double quasi-Poisson brackets!

→ get Van den Bergh's result from basic case A_{Q_-} ; the order of fusion is the one used in the multiplicative moment map

Fusion in the quasi-case : example

 $\underline{\mathsf{LHS}}: A_{Q_{-}} = (\mathbb{C}\bar{Q}_{-})_{1+aa^{*},1+a^{*}a} \text{ has double quasi-Poisson bracket}$ $\{\!\!\{a,a\}\!\!\} = 0 = \{\!\!\{a^{*},a^{*}\}\!\!\}, \quad \{\!\!\{a,a^{*}\}\!\!\} = e_{2} \otimes e_{1} + \frac{1}{2}a^{*}a \otimes e_{1} + \frac{1}{2}e_{2} \otimes aa^{*}$

$$\begin{split} \underline{\text{RHS}} &: A_{Q_{\circ}} \simeq \mathbb{C} \langle a, a^{*} \rangle_{1+aa^{*},1+a^{*}a} \text{ has double quasi-Poisson bracket} \\ & \{\!\!\{a,a\}\!\!\} = & \frac{1}{2} (a^{2} \otimes 1 - 1 \otimes a^{2}) \,, \\ & \{\!\!\{a^{*},a^{*}\}\!\!\} = & -\frac{1}{2} ((a^{*})^{2} \otimes 1 - 1 \otimes (a^{*})^{2}) \,, \\ & \{\!\!\{a,a^{*}\}\!\!\} = & 1 \otimes 1 + \frac{1}{2} a^{*}a \otimes 1 + \frac{1}{2} 1 \otimes aa^{*} + \frac{1}{2} (a^{*} \otimes a - a \otimes a^{*}) \end{split}$$

(this corresponds to the ordering $a < a^*$ in [VdB,'08])

quasi-...

Fusion and morphisms I

Recall the drawback of fusion in an algebra with a double quasi-Poisson bracket : performing the fusions $e_i \rightarrow e_j$ or $e_j \rightarrow e_i$ gives isomorphic algebras, but different double quasi-Poisson brackets!

quasi-...

Fusion and morphisms I

Recall the drawback of fusion in an algebra with a double quasi-Poisson bracket : performing the fusions $e_i \rightarrow e_j$ or $e_j \rightarrow e_i$ gives isomorphic algebras, but different double quasi-Poisson brackets!

Let $\psi: A_1 \to A_2$ be a morphism of double brackets

Definition

If A_1, A_2 are double quasi-Poisson algebras, ψ is a morphism of double quasi-Poisson algebras.

If A_1, A_2 admit multiplicative moment maps Φ_1, Φ_2 and $\psi(\Phi_1) = \Phi_2$, we say that ψ is a morphism of quasi-Hamiltonian algebras.

Fusion and morphisms I

Recall the drawback of fusion in an algebra with a double quasi-Poisson bracket : performing the fusions $e_i \rightarrow e_j$ or $e_j \rightarrow e_i$ gives isomorphic algebras, but different double quasi-Poisson brackets!

Let $\psi: A_1 \to A_2$ be a morphism of double brackets

Definition

If A_1, A_2 are double quasi-Poisson algebras, ψ is a morphism of double quasi-Poisson algebras.

If A_1, A_2 admit multiplicative moment maps Φ_1, Φ_2 and $\psi(\Phi_1) = \Phi_2$, we say that ψ is a morphism of quasi-Hamiltonian algebras.

Proposition

If A is a quasi-Hamiltonian algebra, the algebras $A_{i \to j}$ and $A_{j \to i}$ obtained by fusion of $e_i \to e_j$ and $e_j \to e_i$ are isomorphic as quasi-Hamiltonian algebras (with their structure induced by fusion)

quasi-...

Fusion and morphisms II

Proposition

If A is a quasi-Hamiltonian algebra, the algebras $A_{i \rightarrow j}$ and $A_{j \rightarrow i}$ obtained by fusion of $e_i \rightarrow e_j$ and $e_j \rightarrow e_i$ are isomorphic as quasi-Hamiltonian algebras (with their structure induced by fusion)

• We <u>need</u> the multiplicative moment map to define the isomorphism, contrary to the Hamiltonian case (this can be slightly relaxed)

Non-commutative version of [AKSM,'02]

Isomorphism and fusion in the quasi-case : example

 $\psi: A_{Q_{\circ}} \to A_{Q_{\circ}}$ is an isomorphism of quasi-Hamiltonian algebras for the two *distinct* structures induced by fusion

Morphism for quivers : reversing the arrow

By [VdB,'08], $A_{Q_-}/A_{Q_-^{op}}$ is a quasi-Hamiltonian algebra for

$$\underline{A_{Q_-}}: \quad \{\!\!\{-,-\}\!\!\} = \dots, \ \Phi = (1+aa^*)(1+a^*a)^{-1},$$

$$\overline{A_{Q_-^{op}}}: \quad \{\!\!\{-,-\}\!\!\}' = \dots, \ \Phi' = (1+bb^*)(1+b^*b)^{-1}.$$

Morphism for quivers : reversing the arrow

By [VdB,'08], $A_{Q_-}/A_{Q_-^{op}}$ is a quasi-Hamiltonian algebra for

$$\underline{A_{Q_-}}: \quad \{\!\!\{-,-\}\!\!\} = \dots, \ \Phi = (1+aa^*)(1+a^*a)^{-1},$$

$$\overline{A_{Q_-^{op}}}: \quad \{\!\!\{-,-\}\!\}' = \dots, \ \Phi' = (1+bb^*)(1+b^*b)^{-1}.$$

 $\psi:A_{Q_-}\to A_{Q_-^{op}}$ given by $\phi(a)=b^*,~\phi(a^*)=-(1+bb^*)^{-1}b,$ is an isomorphism of quasi-Hamiltonian algebras.

 ψ lifts the isomorphism of multiplicative preprojective algebras defined in [Crawley-Boevey – Shaw,'06]

quasi-...

Isomorphic multiplicative quiver varieties

Proposition

 $\mathcal{M}^{\Lambda}_{\alpha,q}(Q)$ only depends on α, q and Q seen as an undirected graph, up to isomorphism of Poisson varieties

Isomorphic multiplicative quiver varieties

Proposition

 $\mathcal{M}^{\Lambda}_{\alpha,q}(Q)$ only depends on α, q and Q seen as an undirected graph, up to isomorphism of Poisson varieties

Proof.

It suffices to get that the quasi-Hamiltonian algebra structure on A_Q given by Van den Bergh only depends on Q seen as an undirected graph, up to isomorphism.

This follows from the case of Q_{-} by fusion.

Main technicality here : changing the order of fusions yields a non-trivial isomorphism, so it seems quite cumbersome to explicitly write down this map in general.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you for your attention

Maxime Fairon@glasgow.ac.uk