Double (quasi-)Poisson algebras and their morphisms

Maxime Fairon
School of Mathematics and Statistics
University of Glasgow

Algebra Seminar
25 November 2020

Plan for the talk

(1) Motivation
(2) Double brackets
(3) Morphisms of double Poisson brackets
(9) The "quasi-" case

Quiver varieties

(we do not consider stability parameter)
Fix: quiver Q, dimension vector $\alpha \in \mathbb{N}^{I}$, parameter $\lambda \in \mathbb{C}^{I}$

- Consider double \bar{Q} (add $a^{*}: h \rightarrow t$ for each $a: t \rightarrow h$ in Q)
- Construct $\Pi^{\lambda}(Q)=\mathbb{C} \bar{Q} /\left\langle\sum_{a \in Q}\left[a, a^{*}\right]-\sum_{s \in I} \lambda_{s} e_{s}\right\rangle$

Quiver varieties

(we do not consider stability parameter)
Fix: quiver Q, dimension vector $\alpha \in \mathbb{N}^{I}$, parameter $\lambda \in \mathbb{C}^{I}$

- Consider double \bar{Q} (add $a^{*}: h \rightarrow t$ for each $a: t \rightarrow h$ in Q)
- Construct $\Pi^{\lambda}(Q)=\mathbb{C} \bar{Q} /\left\langle\sum_{a \in Q}\left[a, a^{*}\right]-\sum_{s \in I} \lambda_{s} e_{s}\right\rangle$

Get: A quiver variety :

$$
\mathcal{M}_{\alpha, \lambda}^{\Pi}(Q)=\operatorname{Rep}\left(\Pi^{\lambda}(Q), \alpha\right) / / \operatorname{GL}(\alpha)
$$

which is a Poisson variety for

$$
\left(\mathcal{X}(b) \in \operatorname{Mat}_{\alpha_{t(b)} \times \alpha_{h(b)}}(\mathbb{C}) \forall b \in \bar{Q}\right)
$$

$$
\left\{\mathcal{X}(a)_{i j}, \mathcal{X}\left(a^{*}\right)_{k l}\right\}_{\mathrm{P}}=\left(\operatorname{Id}_{\alpha_{h(a)}}\right)_{k j}\left(\operatorname{Id}_{\alpha_{t(a)}}\right)_{i l}
$$

Quiver varieties

(we do not consider stability parameter)
Fix: quiver Q, dimension vector $\alpha \in \mathbb{N}^{I}$, parameter $\lambda \in \mathbb{C}^{I}$

- Consider double \bar{Q} (add $a^{*}: h \rightarrow t$ for each $a: t \rightarrow h$ in Q)
- Construct $\Pi^{\lambda}(Q)=\mathbb{C} \bar{Q} /\left\langle\sum_{a \in Q}\left[a, a^{*}\right]-\sum_{s \in I} \lambda_{s} e_{s}\right\rangle$

Get: A quiver variety :

$$
\mathcal{M}_{\alpha, \lambda}^{\Pi}(Q)=\operatorname{Rep}\left(\Pi^{\lambda}(Q), \alpha\right) / / \operatorname{GL}(\alpha)
$$

which is a Poisson variety for

$$
\left(\mathcal{X}(b) \in \operatorname{Mat}_{\alpha_{t(b)} \times \alpha_{h(b)}}(\mathbb{C}) \forall b \in \bar{Q}\right)
$$

$$
\left\{\mathcal{X}(a)_{i j}, \mathcal{X}\left(a^{*}\right)_{k l}\right\}_{\mathrm{P}}=\left(\operatorname{Id}_{\alpha_{h(a)}}\right)_{k j}\left(\operatorname{Id}_{\alpha_{t(a)}}\right)_{i l}
$$

$\mathcal{M}_{\alpha, \lambda}^{\Pi}(Q)$ only depends on α, λ and Q seen as an undirected graph, up to isomorphism of Poisson varieties (easy)

Multiplicative quiver varieties

Fix: quiver Q, dimension vector $\alpha \in \mathbb{N}^{I}$, parameter $q \in\left(\mathbb{C}^{\times}\right)^{I}$

- Algebra A_{Q} is localisation of $\mathbb{C} \bar{Q}$ at all $1+a a^{*}, 1+a^{*} a$
- Construct $\Lambda^{q}(Q)=A_{Q} /\left\langle\prod_{\text {order }}\left(1+a a^{*}\right)\left(1+a^{*} a\right)^{-1}-\sum_{s \in I} q_{s} e_{s}\right\rangle$

Multiplicative quiver varieties

Fix: quiver Q, dimension vector $\alpha \in \mathbb{N}^{I}$, parameter $q \in\left(\mathbb{C}^{\times}\right)^{I}$

- Algebra A_{Q} is localisation of $\mathbb{C} \bar{Q}$ at all $1+a a^{*}, 1+a^{*} a$
- Construct $\Lambda^{q}(Q)=A_{Q} /\left\langle\prod_{\text {order }}\left(1+a a^{*}\right)\left(1+a^{*} a\right)^{-1}-\sum_{s \in I} q_{s} e_{s}\right\rangle$

Get: A multiplicative quiver variety [Crawley-Boevey - Shaw,04] :

$$
\mathcal{M}_{\alpha, q}^{\Lambda}(Q)=\operatorname{Rep}\left(\Lambda^{q}(Q), \alpha\right) / / \operatorname{GL}(\alpha)
$$

These are Poisson varieties [Van den Bergh,08]

Multiplicative quiver varieties

Fix: quiver Q, dimension vector $\alpha \in \mathbb{N}^{I}$, parameter $q \in\left(\mathbb{C}^{\times}\right)^{I}$

- Algebra A_{Q} is localisation of $\mathbb{C} \bar{Q}$ at all $1+a a^{*}, 1+a^{*} a$
- Construct $\Lambda^{q}(Q)=A_{Q} /\left\langle\prod_{\text {order }}\left(1+a a^{*}\right)\left(1+a^{*} a\right)^{-1}-\sum_{s \in I} q_{s} e_{s}\right\rangle$

Get: A multiplicative quiver variety [Crawley-Boevey - Shaw,04] :

$$
\mathcal{M}_{\alpha, q}^{\Lambda}(Q)=\operatorname{Rep}\left(\Lambda^{q}(Q), \alpha\right) / / \operatorname{GL}(\alpha)
$$

These are Poisson varieties [Van den Bergh,08]
$\mathcal{M}_{\alpha, q}^{\Lambda}(Q)$ only depends on α, q and Q seen as an undirected graph, up to isomorphism of varieties [CBS,04]

A bit harder to prove : these isomorphisms preserve the Poisson structures

Goal for today

We will show that :
the isomorphisms of (multiplicative) quiver varieties hence obtained can be checked to preserve the Poisson structures directly at the level of the path algebras

Plan for the talk

(1) Motivation
(2) Double brackets
(3) Morphisms of double Poisson brackets
(a) The "quasi-" case

Kontsevich-Rosenberg principle

Following [Kontsevich, '93] and [Kontsevich-Rosenberg, '99]

$$
\begin{aligned}
\text { associative } \mathbb{C} \text {-algebra } & \rightarrow \text { commutative } \mathbb{C} \text {-algebra } \\
A & \longrightarrow \mathbb{C}[\operatorname{Rep}(A, n)]
\end{aligned}
$$

$\mathbb{C}[\operatorname{Rep}(A, n)]$ is generated by symbols $a_{i j}, \forall a \in A, 1 \leq i, j \leq n$.
Rules: $1_{i j}=\delta_{i j},(a+b)_{i j}=a_{i j}+b_{i j},(a b)_{i j}=\sum_{k} a_{i k} b_{k j}$.

Goal : Find a property $P_{n c}$ on A that gives the usual property P on $\mathbb{C}[\operatorname{Rep}(A, n)]$ for all $n \in \mathbb{N}^{\times}$

Double brackets

We follow [Van den Bergh,double Poisson algebras,'08]
A denotes an arbitrary f.g. associative \mathbb{C}-algebra, $\otimes=\otimes_{\mathbb{C}}$
For $d \in A^{\otimes 2}$, set $d=d^{\prime} \otimes d^{\prime \prime}\left(=\sum_{k} d_{k}^{\prime} \otimes d_{k}^{\prime \prime}\right)$, and $\tau_{(12)} d=d^{\prime \prime} \otimes d^{\prime}$.
Multiplication on $A^{\otimes 2}:(a \otimes b)(c \otimes d)=a c \otimes b d$.

Double brackets

We follow [Van den Bergh,double Poisson algebras,'08]
A denotes an arbitrary f.g. associative \mathbb{C}-algebra, $\otimes=\otimes_{\mathbb{C}}$
For $d \in A^{\otimes 2}$, set $d=d^{\prime} \otimes d^{\prime \prime}\left(=\sum_{k} d_{k}^{\prime} \otimes d_{k}^{\prime \prime}\right)$, and $\tau_{(12)} d=d^{\prime \prime} \otimes d^{\prime}$. Multiplication on $A^{\otimes 2}:(a \otimes b)(c \otimes d)=a c \otimes b d$.

Definition

A double bracket on A is a \mathbb{C}-bilinear map $\{-,-\}: A \times A \rightarrow A^{\otimes 2}$ which satisfies
(1) $\{a, b\}\}=-\tau_{(12)}\{\{b, a\}$
(2) $\{a, b c\}\}=(b \otimes 1)\{\{a, c\}+\{\{a, b\}(1 \otimes c)$
(3) $\{a d, b\}=(1 \otimes a)\{\{d, b\}+\{a, b\}(d \otimes 1)$
(cyclic antisymmetry) (outer derivation) (inner derivation)

Preliminary result

(notation) $\rightsquigarrow\{a, b\}=\{a, b\}^{\prime} \otimes\{a, b\}^{\prime \prime}$
Lemma (Van den Bergh,'08)
If A has a double bracket $\{[-,-\}$, then $\mathbb{C}[\operatorname{Rep}(A, n)]$ has a unique antisymmetric biderivation $\{-,-\}_{P}$ satisfying

$$
\begin{equation*}
\left\{a_{i j}, b_{k l}\right\}_{\mathrm{P}}=\left\{\{ a , b \} _ { k j } ^ { \prime } \left\{\{a, b\}_{i l}^{\prime \prime}\right.\right. \tag{1}
\end{equation*}
$$

Preliminary result

(notation) $\rightsquigarrow\{a a, b\}\}\left\{\{a, b\}^{\prime} \otimes\{a, b\}^{\prime \prime}\right.$
Lemma (Van den Bergh,'08)
If A has a double bracket $\{-,-\}$, then $\mathbb{C}[\operatorname{Rep}(A, n)]$ has a unique antisymmetric biderivation $\{-,-\}_{P}$ satisfying

$$
\begin{equation*}
\left\{a_{i j}, b_{k l}\right\}_{\mathrm{P}}=\{a, b\}_{k j}^{\prime}\left\{\{a, b\}_{i l}^{\prime \prime} .\right. \tag{1}
\end{equation*}
$$

Example
$A=\mathbb{C}[x],\{\{x, x\}\}=x \otimes 1-1 \otimes x$ endows $\mathfrak{g l}_{n}(\mathbb{C})=\mathbb{C}[\operatorname{Rep}(A, n)]$ with

$$
\left\{x_{i j}, x_{k l}\right\}_{\mathrm{P}}=x_{k j} 1_{i l}-1_{k j} x_{i l}
$$

Preliminary result

(notation) $\rightsquigarrow\{a a, b\}\}\left\{\{a, b\}^{\prime} \otimes\{a, b\}^{\prime \prime}\right.$
Lemma (Van den Bergh,'08)
If A has a double bracket $\{-,-\}$, then $\mathbb{C}[\operatorname{Rep}(A, n)]$ has a unique antisymmetric biderivation $\{-,-\}_{P}$ satisfying

$$
\begin{equation*}
\left\{a_{i j}, b_{k l}\right\}_{\mathrm{P}}=\{a, b\}_{k j}^{\prime}\left\{\{a, b\}_{i l}^{\prime \prime} .\right. \tag{1}
\end{equation*}
$$

Example
$A=\mathbb{C}[x],\{\{x, x\}\}=x \otimes 1-1 \otimes x$ endows $\mathfrak{g l}_{n}(\mathbb{C})=\mathbb{C}[\operatorname{Rep}(A, n)]$ with

$$
\left\{x_{i j}, x_{k l}\right\}_{\mathrm{P}}=x_{k j} \delta_{i l}-\delta_{k j} x_{i l} .
$$

Double Poisson bracket

Recall $d=d^{\prime} \otimes d^{\prime \prime} \in A^{\otimes 2}$ (notation) $\rightsquigarrow\{a, b\}=\left\{\{a, b\}^{\prime} \otimes\{a, b\}^{\prime \prime}\right.$

From a double bracket $\left\{[-,-\}\right.$, define $\left\{\{-,-,-\}: A^{\times 3} \rightarrow A^{\otimes 3}\right.$

$$
\begin{aligned}
\{\{a, b, c\}\}= & \left\{\left\{a,\left\{\{b, c\}^{\prime}\right\}\right\} \otimes\{\{b, c\}\}^{\prime \prime}\right. \\
& +\tau_{(123)}\left\{\left\{b,\left\{\{c, a\}^{\prime}\right\}\right\} \otimes\{c, a\}\right\}^{\prime \prime} \\
& +\tau_{(132)}\left\{\left\{c,\left\{\{a, b\}^{\prime}\right\}\right\} \otimes\{a, b\}\right\}^{\prime \prime}, \quad \forall a, b, c \in A
\end{aligned}
$$

Double Poisson bracket

Recall $d=d^{\prime} \otimes d^{\prime \prime} \in A^{\otimes 2}$ (notation) $\rightsquigarrow\{a, b\}=\{a, b\}^{\prime} \otimes\{a, b\}^{\prime \prime}$

From a double bracket $\left\{\{-,-\}\right.$, define $\left\{\{-,-,-\}: A^{\times 3} \rightarrow A^{\otimes 3}\right.$

$$
\begin{aligned}
\{\{a, b, c\}\}= & \left\{\left\{a,\left\{\{b, c\}^{\prime}\right\}\right\} \otimes\{\{b, c\}\}^{\prime \prime}\right. \\
& +\tau_{(123)}\left\{\left\{b,\left\{\{c, a\}^{\prime}\right\}\right\} \otimes\{\{c, a\}\}^{\prime \prime}\right. \\
& +\tau_{(132)}\left\{\left\{c,\left\{\{a, b\}^{\prime}\right\}\right\} \otimes\{\{a, b\}\}^{\prime \prime}, \quad \forall a, b, c \in A\right.
\end{aligned}
$$

Definition
A double bracket $\{-,-\}$ is Poisson if $\{-,-,-\}: A^{\times 3} \rightarrow A^{\otimes 3}$ vanishes. We say $(A,\{-,-\})$ is a double Poisson algebra.

Double Poisson bracket

Recall $d=d^{\prime} \otimes d^{\prime \prime} \in A^{\otimes 2}$ (notation) $\rightsquigarrow\{a, b\}=\{a, b\}^{\prime} \otimes\{a, b\}^{\prime \prime}$

From a double bracket $\left\{\{-,-\}\right.$, define $\left\{\{-,-,-\}: A^{\times 3} \rightarrow A^{\otimes 3}\right.$

$$
\begin{aligned}
\{\{a, b, c\}\}= & \left\{\left\{a,\left\{\{b, c\}^{\prime}\right\}\right\} \otimes\{\{b, c\}\}^{\prime \prime}\right. \\
& +\tau_{(123)}\left\{\left\{b,\{\{c, a\}\}^{\prime}\right\}\right\} \otimes\{\{c, a\}\}^{\prime \prime} \\
& +\tau_{(132)}\left\{\left\{c,\{\{a, b\}\}^{\prime}\right\}\right\} \otimes\{\{a, b\}\}^{\prime \prime}, \quad \forall a, b, c \in A
\end{aligned}
$$

Definition

A double bracket $\{-,-\}$ is Poisson if $\{-,-,-\}: A^{\times 3} \rightarrow A^{\otimes 3}$ vanishes. We say $(A,\{-,-\})$ is a double Poisson algebra.

Example

1. $A=\mathbb{C}[x],\{x, x\}=x \otimes 1-1 \otimes x$.
2. $A=\mathbb{C}\langle x, y\rangle,\{\{x, x\}\}=0=\{\{y, y\},\{\{x, y\}\}=1 \otimes 1$.

A first result

(notation) $\left.\rightsquigarrow\{\{a, b\}=\{a, b\}\}^{\prime} \otimes\{a, b\}\right\}^{\prime \prime}$
Proposition (Van den Bergh,'08)
If A has a double bracket $\{-,-\}$, then $\mathbb{C}[\operatorname{Rep}(A, n)]$ has a unique antisymmetric biderivation $\{-,-\}_{\mathrm{P}}$ satisfying

$$
\begin{equation*}
\left\{a_{i j}, b_{k l}\right\}_{\mathrm{P}}=\{a, b\}_{k j}^{\prime}\{a, b\}_{i l}^{\prime \prime} . \tag{2}
\end{equation*}
$$

If $\left\{\{-,-\}\right.$ is Poisson, then $\{-,-\}_{\mathrm{P}}$ is a Poisson bracket.

A first result

(notation) $\left.\rightsquigarrow\{a, b\}=\{a, b\}\}^{\prime} \otimes\{a, b\}\right\}^{\prime \prime}$
Proposition (Van den Bergh,'08)
If A has a double bracket $\{[-,-\}$, then $\mathbb{C}[\operatorname{Rep}(A, n)]$ has a unique antisymmetric biderivation $\{-,-\}_{\mathrm{P}}$ satisfying

$$
\begin{equation*}
\left\{a_{i j}, b_{k l}\right\}_{\mathrm{P}}=\{a, b\}_{k j}^{\prime}\left\{\{a, b\}_{j l}^{\prime \prime} .\right. \tag{2}
\end{equation*}
$$

If $\left\{[-,-\}\right.$ is Poisson, then $\{-,-\}_{\mathrm{P}}$ is a Poisson bracket.

Example

$A=\mathbb{C}\langle x, y\rangle,\{\{x, x\}=0=\{\{y, y\},\{\{x, y\}\}=1 \otimes 1$ endows $\mathfrak{g l}_{n}(\mathbb{C})^{\times 2}=\mathbb{C}[\operatorname{Rep}(A, n)]$ with

$$
\left\{x_{i j}, y_{k l}\right\}_{\mathrm{P}}=\delta_{k j} \delta_{i l}, \quad\left\{x_{i j}, x_{k l}\right\}_{\mathrm{P}}=0=\left\{y_{i j}, y_{k l}\right\}_{\mathrm{P}} .
$$

This is the canonical Poisson bracket on $T^{*} \mathfrak{g l}_{n}$.

A first dictionary

Algebra A

double bracket $\{-,-\}\}$
double Poisson bracket $\{[-,-\}$

Geometry $\mathbb{C}[\operatorname{Rep}(A, n)]$
anti-symmetric biderivation $\{-,-\}_{\mathrm{P}}$

Poisson bracket $\{-,-\}_{P}$

Hamiltonian reduction

Definition

If $(A,\{\{-,-\})$ is a double Poisson algebra, $\mu_{A} \in A$ is a moment map if $\left\{\mu_{A}, a\right\}=a \otimes 1-1 \otimes a, \forall a \in A$

Hamiltonian reduction

Definition

If $(A,\{\{-,-\})$ is a double Poisson algebra,
$\mu_{A} \in A$ is a moment map if $\left\{\mu_{A}, a\right\}=a \otimes 1-1 \otimes a, \forall a \in A$
For any $\lambda \in \mathbb{C},\left\{\mu_{A}-\lambda, a\right\}=0$, where $\{-,-\}=\mathrm{m} \circ\{\{-,-\}$

Hamiltonian reduction

Definition

If $(A,\{\{-,-\})$ is a double Poisson algebra, $\mu_{A} \in A$ is a moment map if $\left\{\mu_{A}, a\right\}=a \otimes 1-1 \otimes a, \forall a \in A$

For any $\lambda \in \mathbb{C},\left\{\mu_{A}-\lambda, a\right\}=0$, where $\{-,-\}=\mathrm{m} \circ\{\{-,-\}$
$\Rightarrow\{-,-\}$ descends to a Lie bracket on the vector space

$$
A_{\lambda} /\left[A_{\lambda}, A_{\lambda}\right] \text { for } A_{\lambda}:=A /\left\langle\mu_{A}-\lambda\right\rangle
$$

Hamiltonian reduction

Definition

If $(A,\{\{-,-\})$ is a double Poisson algebra, $\mu_{A} \in A$ is a moment map if $\left\{\mu_{A}, a\right\}=a \otimes 1-1 \otimes a, \forall a \in A$

For any $\lambda \in \mathbb{C},\left\{\mu_{A}-\lambda, a\right\}=0$, where $\{-,-\}=\mathrm{m} \circ\{\{-,-\}$
$\Rightarrow\{-,-\}$ descends to a Lie bracket on the vector space

$$
A_{\lambda} /\left[A_{\lambda}, A_{\lambda}\right] \text { for } A_{\lambda}:=A /\left\langle\mu_{A}-\lambda\right\rangle
$$

Proposition (Van den Bergh,'08)
The Poisson structure $\{-,-\}_{\mathrm{P}}$ on $\operatorname{Rep}(A, n)$ descends to $\operatorname{Rep}\left(A_{\lambda}, n\right) / / \mathrm{GL}_{n}$ in such a way that

$$
\begin{equation*}
\{\operatorname{tr} \mathcal{X}(a), \operatorname{tr} \mathcal{X}(b)\}_{\mathrm{P}}=\operatorname{tr} \mathcal{X}(\{a, b\}) \tag{3}
\end{equation*}
$$

Dictionary

Algebra A

double bracket $\{[-,-\}\}$
double Poisson bracket $\{\{-,-\}$
moment map μ_{A}
$A_{\lambda}=A /\left(\mu_{A}-\lambda\right), \lambda \in \mathbb{C}$
$\left(A_{\lambda} /\left[A_{\lambda}, A_{\lambda}\right],\{-,-\}\right)$ is a Lie algebra

Geometry $\mathbb{C}[\operatorname{Rep}(A, n)]$
anti-symmetric biderivation $\{-,-\}_{\mathrm{P}}$

Poisson bracket $\{-,-\}_{P}$
moment map $\mathcal{X}\left(\mu_{A}\right)$
slice $S_{\lambda}:=\mathcal{X}\left(\mu_{A}\right)^{-1}\left(\lambda \operatorname{Id}_{n}\right)$
$\{-,-\}_{\mathrm{P}}$ is Poisson on $\mathbb{C}\left[S_{\lambda} / / \mathrm{GL}_{n}\right]$

Recall $\{-,-\}=\mathrm{m} \circ\{-,-\}$ descends to $A_{\lambda} /\left[A_{\lambda}, A_{\lambda}\right]$

Examples from quivers

Fix quiver Q, with double \bar{Q} (if $a \in Q, a: t \rightarrow h$, add $a^{*}: h \rightarrow t$)
Theorem (Van den Bergh,'08)
The algebra $A=\mathbb{C} \bar{Q}$ has a double Poisson bracket given by

$$
\begin{equation*}
\left.\left.\left\{a, a^{*}\right\}\right\}=e_{h(a)} \otimes e_{t(a)} \forall a \in Q, \quad\{a, b\}\right\}=0 \text { if } a \neq b^{*}, b \neq a^{*} \tag{4}
\end{equation*}
$$

and (non-commutative) moment map $\mu=\sum_{a \in Q}\left[a, a^{*}\right]$.

Examples from quivers

Fix quiver Q, with double \bar{Q} (if $a \in Q, a: t \rightarrow h$, add $a^{*}: h \rightarrow t$)
Theorem (Van den Bergh,'08)
The algebra $A=\mathbb{C} \bar{Q}$ has a double Poisson bracket given by

$$
\begin{equation*}
\left.\left\{a, a^{*}\right\}\right\}=e_{h(a)} \otimes e_{t(a)} \forall a \in Q, \quad\{a, b\}=0 \text { if } a \neq b^{*}, b \neq a^{*} \tag{4}
\end{equation*}
$$

and (non-commutative) moment map $\mu=\sum_{a \in Q}\left[a, a^{*}\right]$.

- Fix a dimension vector $\alpha \in \mathbb{N}^{I}$. Attach $\mathbb{C}^{\alpha_{s}}$ to vertex $s \in I$ of \bar{Q}

Examples from quivers

Fix quiver Q, with double \bar{Q} (if $a \in Q, a: t \rightarrow h$, add $a^{*}: h \rightarrow t$)
Theorem (Van den Bergh,'08)
The algebra $A=\mathbb{C} \bar{Q}$ has a double Poisson bracket given by

$$
\begin{equation*}
\left.\left.\left\{a, a^{*}\right\}\right\}=e_{h(a)} \otimes e_{t(a)} \forall a \in Q, \quad\{a, b\}\right\}=0 \text { if } a \neq b^{*}, b \neq a^{*} \tag{4}
\end{equation*}
$$

and (non-commutative) moment map $\mu=\sum_{a \in Q}\left[a, a^{*}\right]$.

- Fix a dimension vector $\alpha \in \mathbb{N}^{I}$. Attach $\mathbb{C}^{\alpha_{s}}$ to vertex $s \in I$ of \bar{Q} $\Longrightarrow \operatorname{Rep}(\mathbb{C} \bar{Q}, \alpha)$ has a Poisson structure (with 'usual' moment map)

Examples from quivers

Fix quiver Q, with double \bar{Q} (if $a \in Q, a: t \rightarrow h$, add $a^{*}: h \rightarrow t$)
Theorem (Van den Bergh,'08)
The algebra $A=\mathbb{C} \bar{Q}$ has a double Poisson bracket given by

$$
\begin{equation*}
\left.\left.\left\{a, a^{*}\right\}\right\}=e_{h(a)} \otimes e_{t(a)} \forall a \in Q, \quad\{a, b\}\right\}=0 \text { if } a \neq b^{*}, b \neq a^{*} \tag{4}
\end{equation*}
$$

and (non-commutative) moment map $\mu=\sum_{a \in Q}\left[a, a^{*}\right]$.

- Fix a dimension vector $\alpha \in \mathbb{N}^{I}$. Attach $\mathbb{C}^{\alpha_{s}}$ to vertex $s \in I$ of \bar{Q} $\Longrightarrow \operatorname{Rep}(\mathbb{C} \bar{Q}, \alpha)$ has a Poisson structure (with 'usual' moment map)
\Longrightarrow Poisson structure on quiver varieties by Hamiltonian reduction on

$$
\left\{\sum_{a \in Q}\left[\mathcal{X}(a), \mathcal{X}\left(a^{*}\right)\right]=\prod_{s \in I} \lambda_{s} \operatorname{Id}_{\alpha_{s}}\right\} / / \mathrm{GL}(\alpha) \simeq \underbrace{\operatorname{Rep}\left(\Pi^{\lambda}(Q), \alpha\right) / / \mathrm{GL}(\alpha)}_{\mathcal{M}_{\alpha, \lambda}^{\mathrm{H}}(Q)}
$$

Nice example: CM spaces

$$
\begin{aligned}
& \{\{x, y\}\}=e_{0} \otimes e_{0} \\
& \{\{v, w\}\}=e_{0} \otimes e_{\infty} \\
& \left(\{\{a, b\}\}=0 \text { if } a \neq b^{*}, b \neq a^{*}\right) \\
& \mu=[x, y]+[v, w]
\end{aligned}
$$

Nice example: CM spaces

$$
\begin{aligned}
& \{\{x, y\}\}=e_{0} \otimes e_{0} \\
& \{\{v, w\}\}=e_{0} \otimes e_{\infty} \\
& \left(\{\{a, b\}\}=0 \text { if } a \neq b^{*}, b \neq a^{*}\right) \\
& \mu=[x, y]+[v, w]
\end{aligned}
$$

1. Take $\left(\alpha_{0}, \alpha_{\infty}\right)=(n, 1), n \geq 1$; Attach \mathbb{C}^{n} at $0, \mathbb{C}$ at ∞
2. $x, y, v, w \rightarrow X, Y \in \operatorname{Mat}_{n \times n}, V \in \operatorname{Mat}_{1 \times n}, W \in \operatorname{Mat}_{n \times 1}$
3. $\left\{[-,-\} \rightarrow\left\{X_{i j}, Y_{k l}\right\}=\delta_{k j} \delta_{i l},\left\{V_{j}, W_{k}\right\}=\delta_{k j}\right.$
4. $\mu=[x, y]+[v, w]$ restricts to $[x, y]-w v \in e_{0} \mathbb{C} \bar{Q}_{1} e_{0}$
$\rightsquigarrow[X, Y]-W V$ is moment map for $\mathrm{GL}_{n} \curvearrowright \mathbb{C}^{n} \hookrightarrow \mathbb{C}^{n} \oplus \mathbb{C}$

Nice example: CM spaces

$$
\begin{aligned}
& \{x, y\}\}=e_{0} \otimes e_{0} \\
& \{v, w\}=e_{0} \otimes e_{\infty} \\
& \left(\{\{a, b\}\}=0 \text { if } a \neq b^{*}, b \neq a^{*}\right) \\
& \mu=[x, y]+[v, w]
\end{aligned}
$$

1. Take $\left(\alpha_{0}, \alpha_{\infty}\right)=(n, 1), n \geq 1$; Attach \mathbb{C}^{n} at $0, \mathbb{C}$ at ∞
2. $x, y, v, w \rightarrow X, Y \in \operatorname{Mat}_{n \times n}, V \in \operatorname{Mat}_{1 \times n}, W \in \operatorname{Mat}_{n \times 1}$
3. $\left\{[-,-\} \rightarrow\left\{X_{i j}, Y_{k l}\right\}=\delta_{k j} \delta_{i l},\left\{V_{j}, W_{k}\right\}=\delta_{k j}\right.$
4. $\mu=[x, y]+[v, w]$ restricts to $[x, y]-w v \in e_{0} \mathbb{C} \bar{Q}_{1} e_{0}$
$\rightsquigarrow[X, Y]-W V$ is moment map for $\mathrm{GL}_{n} \curvearrowright \mathbb{C}^{n} \hookrightarrow \mathbb{C}^{n} \oplus \mathbb{C}$
Hamiltonian reduction at $\operatorname{Id}_{n}: \mathcal{C}_{n}=\left\{[X, Y]-W V=\mathrm{Id}_{n}\right\} / / \mathrm{GL}_{n}$

Plan for the talk

(1) Motivation
(2) Double brackets
(3) Morphisms of double Poisson brackets
(a) The "quasi-" case

Definition I

(mostly based on [F., 2008.01409] from now on)
A_{1}, A_{2} endowed with double brackets $\left\{\{-,-\}_{1},\{\{-,-\}\}_{2}\right.$.

Definition

$\phi: A_{1} \rightarrow A_{2}$ is a morphism of double brackets if it is an algebra homomorphism such that for any $a, b \in A_{1}$

$$
\left\{\{\phi(a), \phi(b)\}_{2}=(\phi \otimes \phi)\left\{\{a, b\}_{1} .\right.\right.
$$

Definition I

(mostly based on [F., 2008.01409] from now on)
A_{1}, A_{2} endowed with double brackets $\left\{\{-,-\}_{1},\{\{-,-\}\}_{2}\right.$.

Definition

$\phi: A_{1} \rightarrow A_{2}$ is a morphism of double brackets if it is an algebra homomorphism such that for any $a, b \in A_{1}$

$$
\left\{\{\phi(a), \phi(b)\}_{2}=(\phi \otimes \phi)\{a, b\}_{1} .\right.
$$

Example
$A=\mathbb{C}\langle x, y\rangle$ can be endowed with

$$
\begin{aligned}
& \left\{\{x, x\}_{1}=0=\left\{\{x, x\}_{2}, \quad\left\{\{y, y\}_{1}=0=\left\{\{y, y\}_{2},\right.\right.\right.\right. \\
& \{x, y\}_{1}=1 \otimes 1,\left\{\{x, y\}_{2}=-1 \otimes 1 .\right.
\end{aligned}
$$

Automorphism $x \mapsto y, y \mapsto x$ defines an isomorphism of double brackets $\left(A,\left\{\{-,-\}_{1}\right) \rightarrow\left(A,\left\{\{-,-\}_{2}\right)\right.\right.$

Definition II

A_{1}, A_{2} endowed with double brackets $\left\{[-,-\}_{1},\left\{[-,-\}_{2}\right.\right.$.
$\phi: A_{1} \rightarrow A_{2}$ is a morphism of double brackets : $\{\phi(a), \phi(b)\}_{2}=(\phi \otimes \phi)\{a, b\}_{1}$

Definition II

A_{1}, A_{2} endowed with double brackets $\left\{\{-,-\}_{1},\left\{\{-,-\}_{2}\right.\right.$.
$\phi: A_{1} \rightarrow A_{2}$ is a morphism of double brackets : $\left\{\{\phi(a), \phi(b)\}_{2}=(\phi \otimes \phi)\{a, b\}_{1}\right.$

Definition

If A_{1}, A_{2} are double Poisson algebras, ϕ is a morphism of double Poisson algebras.
If A_{1}, A_{2} admit moment maps μ_{1}, μ_{2} and $\phi\left(\mu_{1}\right)=\mu_{2}$, we say that ϕ is a morphism of Hamiltonian algebras.

Definition II

A_{1}, A_{2} endowed with double brackets $\left\{\{-,-\}_{1},\left\{\{-,-\}_{2}\right.\right.$.
$\phi: A_{1} \rightarrow A_{2}$ is a morphism of double brackets : $\left\{\{\phi(a), \phi(b)\}_{2}=(\phi \otimes \phi)\{a, b\}_{1}\right.$

Definition

If A_{1}, A_{2} are double Poisson algebras, ϕ is a morphism of double Poisson algebras.
If A_{1}, A_{2} admit moment maps μ_{1}, μ_{2} and $\phi\left(\mu_{1}\right)=\mu_{2}$, we say that ϕ is a morphism of Hamiltonian algebras.
\rightsquigarrow induces Poisson morphisms on Poisson varieties :

1. $\phi_{n}: \operatorname{Rep}\left(A_{1}, n\right) \rightarrow \operatorname{Rep}\left(A_{2}, n\right)$,
given by $\phi_{n}(\mathcal{X}(a))=\mathcal{X}(\phi(a))$ s.t. $\phi_{n}\left(\mathcal{X}\left(\mu_{1}\right)\right)=\mathcal{X}\left(\mu_{2}\right)$

Definition II

A_{1}, A_{2} endowed with double brackets $\left\{\{-,-\}_{1},\left\{\{-,-\}_{2}\right.\right.$.
$\phi: A_{1} \rightarrow A_{2}$ is a morphism of double brackets : $\left\{\{\phi(a), \phi(b)\}_{2}=(\phi \otimes \phi)\{a, b\}_{1}\right.$

Definition

If A_{1}, A_{2} are double Poisson algebras, ϕ is a morphism of double Poisson algebras.
If A_{1}, A_{2} admit moment maps μ_{1}, μ_{2} and $\phi\left(\mu_{1}\right)=\mu_{2}$, we say that ϕ is a morphism of Hamiltonian algebras.
\rightsquigarrow induces Poisson morphisms on Poisson varieties :

1. $\phi_{n}: \operatorname{Rep}\left(A_{1}, n\right) \rightarrow \operatorname{Rep}\left(A_{2}, n\right)$,
given by $\phi_{n}(\mathcal{X}(a))=\mathcal{X}(\phi(a))$ s.t. $\phi_{n}\left(\mathcal{X}\left(\mu_{1}\right)\right)=\mathcal{X}\left(\mu_{2}\right)$
2. $\bar{\phi}_{n}^{\lambda}: \mathcal{X}\left(\mu_{1}\right)^{-1}\left(\lambda \mathrm{Id}_{n}\right) / / \mathrm{GL}_{n} \rightarrow \mathcal{X}\left(\mu_{2}\right)^{-1}\left(\lambda \mathrm{Id}_{n}\right) / / \mathrm{GL}_{n}$
given by $\bar{\phi}_{n}^{\lambda}(\operatorname{tr} \mathcal{X}(a))=\operatorname{tr} \mathcal{X}(\phi(a))$

Morphism for quivers: reversing the arrow

Morphism for quivers : reversing the arrow

By $\left[\mathrm{VdB},{ }^{\prime} 08\right], \mathbb{C} \bar{Q}_{-} / \mathbb{C} \bar{Q}_{-}^{o p}$ is a Hamiltonian algebra for

$$
\begin{aligned}
& \left.\left.\underline{\mathbb{C}} \bar{Q}_{-}: \quad\{a, a\}\right\}=0=\left\{\left\{a^{*}, a^{*}\right\}\right\}, \quad\left\{a, a^{*}\right\}\right\}=e_{2} \otimes e_{1}, \mu=\left[a, a^{*}\right], \\
& \underline{\mathbb{C} \bar{Q}_{-}^{o p}:} \quad\left\{\{b, b\}^{\prime}=0=\left\{\left\{b^{*}, b^{*}\right\}\right\}^{\prime}, \quad\left\{\left\{b, b^{*}\right\}\right\}^{\prime}=e_{1} \otimes e_{2}, \mu^{\prime}=\left[b, b^{*}\right] .\right.
\end{aligned}
$$

Morphism for quivers : reversing the arrow

By [VdB, ${ }^{\prime} 8$], $\mathbb{C} \bar{Q}_{-} / \mathbb{C} \bar{Q}_{-}^{o p}$ is a Hamiltonian algebra for

$$
\begin{array}{lll}
\mathbb{C} \bar{Q}_{-}: & \{a, a\}=0=\left\{a^{*}, a^{*}\right\}, & \left.\left\{a, a^{*}\right\}\right\}=e_{2} \otimes e_{1}, \mu=\left[a, a^{*}\right], \\
\mathbb{C} \bar{Q}_{-}^{o p}: & \{b, b\}^{\prime}=0=\left\{b^{*}, b^{*}\right\}^{\prime}, & \left.\left\{b, b^{*}\right\}\right\}^{\prime}=e_{1} \otimes e_{2}, \mu^{\prime}=\left[b, b^{*}\right] .
\end{array}
$$

$\phi: \mathbb{C} \bar{Q}_{-} \rightarrow \mathbb{C} \bar{Q}_{-}^{o p}$ given by $\phi(a)=b^{*}, \phi\left(a^{*}\right)=-b$, is an isomorphism of Hamiltonian algebras.
ϕ lifts the isomorphism of preprojective algebras [Crawley-Boevey,Holland,'98]
\rightsquigarrow Poisson isomorphism $\bar{\phi}_{\alpha}^{\lambda}: \mathcal{M}_{\alpha, \lambda}^{\Pi}\left(Q_{-}\right) \rightarrow \mathcal{M}_{\alpha, \lambda}^{\Pi}\left(Q_{-}^{o p}\right)$

Fusion

Any quiver Q can be obtained by taking $|Q|$ copies of $Q_{-}: \bullet \longrightarrow \bullet$

Fusion

Any quiver Q can be obtained by taking $|Q|$ copies of $Q_{-}: \bullet \longrightarrow \bullet$

Fusion

Any quiver Q can be obtained by taking $|Q|$ copies of Q_{-}:

By "doubling", \bar{Q} is obtained from $|Q|$ copies of \bar{Q}_{-}

Fusion

Any quiver Q can be obtained by taking $|Q|$ copies of $Q_{-}: \bullet \longrightarrow \bullet$

By "doubling", \bar{Q} is obtained from $|Q|$ copies of \bar{Q}_{-}

The analogous construction at the algebra level is called fusion [$\mathrm{VdB},{ }^{\prime} 08$] It consists of identifying orthogonal idempotents in the algebra \rightsquigarrow can obtain $\mathbb{C} \bar{Q}$ from $|Q|$ copies of $\mathbb{C} \bar{Q}_{-}$by fusion of the idempotents corresponding to the identified vertices

Fusion and morphisms

Lemma

Fusion is compatible with morphisms of double (Poisson) brackets

Fusion and morphisms

Lemma

Fusion is compatible with morphisms of double (Poisson) brackets

Example ($Q_{-}: 1 \xrightarrow{a} 2, \quad Q_{-}^{o p}: 2 \xrightarrow{b} 1$)
Fusion of the idempotents in $\mathbb{C} \bar{Q}_{-}$or $\mathbb{C} \bar{Q}_{-}^{o p}$ results in the free algebra $\mathbb{C}\left\langle a, a^{*}\right\rangle$ or $\mathbb{C}\left\langle b, b^{*}\right\rangle$

Under identification with $\mathbb{C}\langle x, y\rangle$ through $a, b \leftrightarrow x$ and $a^{*}, b^{*} \leftrightarrow y$, we get the Hamiltonian algebra structure

$$
\{\{x, x\}\}=0=\{\{y, y\}\}, \quad\{\{x, y\}=1 \otimes 1, \mu=[x, y]
$$

Fusion and morphisms

Lemma

Fusion is compatible with morphisms of double (Poisson) brackets

Example ($Q_{-}: 1 \xrightarrow{a} 2, \quad Q_{-}^{o p}: 2 \xrightarrow{b} 1$)
Fusion of the idempotents in $\mathbb{C} \bar{Q}_{-}$or $\mathbb{C} \bar{Q}_{-}^{o p}$ results in the free algebra $\mathbb{C}\left\langle a, a^{*}\right\rangle$ or $\mathbb{C}\left\langle b, b^{*}\right\rangle$
Under identification with $\mathbb{C}\langle x, y\rangle$ through $a, b \leftrightarrow x$ and $a^{*}, b^{*} \leftrightarrow y$, we get the Hamiltonian algebra structure $\{x, x\}\}=0=\{\{y, y\}, \quad\{x, y\}\}=1 \otimes 1, \mu=[x, y]$
The isomorphism $\phi: \mathbb{C} \bar{Q}_{-} \rightarrow \mathbb{C} \bar{Q}_{-}^{o p}$ given by $\phi(a)=b^{*}, \phi\left(a^{*}\right)=-b$ becomes an automorphism (of Hamiltonian algebras) on $\mathbb{C}\langle x, y\rangle$ given by $x \mapsto y, y \mapsto-x$.

Isomorphic quiver varieties

Proposition

$\mathcal{M}_{\alpha, \lambda}^{\Pi}(Q)$ only depends on α, λ and Q seen as an undirected graph, up to isomorphism of Poisson varieties

Isomorphic quiver varieties

Proposition

$\mathcal{M}_{\alpha, \lambda}^{\Pi}(Q)$ only depends on α, λ and Q seen as an undirected graph, up to isomorphism of Poisson varieties

Proof.

It suffices to get that the Hamiltonian algebra structure on $\mathbb{C} \bar{Q}$ given by Van den Bergh only depends on Q seen as an undirected graph, up to isomorphism.

Isomorphic quiver varieties

Proposition

$\mathcal{M}_{\alpha, \lambda}^{\Pi}(Q)$ only depends on α, λ and Q seen as an undirected graph, up to isomorphism of Poisson varieties

Proof.

It suffices to get that the Hamiltonian algebra structure on $\mathbb{C} \bar{Q}$ given by Van den Bergh only depends on Q seen as an undirected graph, up to isomorphism.

This follows from the case of Q_{-}by fusion.

A question

The morphism giving that "the Hamiltonian algebra structure on $\mathbb{C} \bar{Q}$ given by Van den Bergh only depends on Q seen as an undirected graph" is obtained by lifting the corresponding isomorphism of (deformed) preprojective algebras $\Pi^{\lambda}(Q)=\mathbb{C} \bar{Q} /\left\langle\sum_{a}\left[a, a^{*}\right]-\lambda\right\rangle$ given in [CBH,'98]

A question

The morphism giving that "the Hamiltonian algebra structure on $\mathbb{C} \bar{Q}$ given by Van den Bergh only depends on Q seen as an undirected graph" is obtained by lifting the corresponding isomorphism of (deformed) preprojective algebras $\Pi^{\lambda}(Q)=\mathbb{C} \bar{Q} /\left\langle\sum_{a}\left[a, a^{*}\right]-\lambda\right\rangle$ given in [CBH,'98]

Question

When can we lift an automorphism of $\Pi^{\lambda}(Q)$ to an automorphism of Hamiltonian algebras on $\mathbb{C} \bar{Q}$? (for a fixed pair $(\{-,-\}, \mu)$)

A question

The morphism giving that "the Hamiltonian algebra structure on $\mathbb{C} \bar{Q}$ given by Van den Bergh only depends on Q seen as an undirected graph" is obtained by lifting the corresponding isomorphism of (deformed) preprojective algebras $\Pi^{\lambda}(Q)=\mathbb{C} \bar{Q} /\left\langle\sum_{a}\left[a, a^{*}\right]-\lambda\right\rangle$ given in [CBH,'98]

Question

When can we lift an automorphism of $\Pi^{\lambda}(Q)$ to an automorphism of Hamiltonian algebras on $\mathbb{C} \bar{Q}$? (for a fixed pair $(\{-,-\}, \mu)$)

Example (first Weyl algebra $A_{1}=\mathbb{C}\langle x, y\rangle /\langle x y-y x-1\rangle$)
A_{1} is isomorphic to $\Pi^{1}\left(Q_{\circ}\right)$ for Q_{\circ} the one-loop quiver.
Following [Dixmier,'68], automorphisms of A_{1} are generated by

$$
\phi_{k, \gamma}(x)=x+\gamma y^{k}, \phi_{k, \gamma}(y)=y, \quad \phi_{k, \gamma}^{\prime}(x)=x, \quad \phi_{k, \gamma}^{\prime}(y)=y+\gamma x^{k}
$$

They can be lifted as Hamiltonian algebras automorphisms on $\mathbb{C} \bar{Q}_{\circ}$ (!)

Plan for the talk

(1) Motivation
(2) Double brackets
(3) Morphisms of double Poisson brackets
(9) The "quasi-" case

quasi-Dictionary

$\{-,-\}=\mathrm{m} \circ\left\{\{-,-\}\right.$ descends to $A_{q} /\left[A_{q}, A_{q}\right]$

Algebra A
double bracket $\{\{-,-\}$
double quasi-Poisson bracket $\{1-,-\}$
multiplicative moment map Φ_{A}
$A_{q}=A /\left(\Phi_{A}-q\right), q \in \mathbb{C}^{\times}$
$\left(A_{q} /\left[A_{q}, A_{q}\right],\{-,-\}\right)$ is Lie algebra

Geometry $\mathbb{C}[\operatorname{Rep}(A, n)]$
anti-symmetric biderivation $\{-,-\}_{P}$
quasi-Poisson bracket $\{-,-\}_{P}$
multiplicative moment map $\mathcal{X}\left(\Phi_{A}\right)$ slice $S_{q}:=\mathcal{X}\left(\Phi_{A}\right)^{-1}\left(q \operatorname{Id}_{n}\right)$
$\{-,-\}_{\mathrm{P}}$ is Poisson on $\mathbb{C}\left[S_{q} / / \mathrm{GL}_{n}\right]$
quasi-Poisson geometry after [Alekseev - Kosmann-Schwarzbach - Meinrenken,'02]

Examples from quivers

Fix quiver Q. Let $A_{Q}=\mathbb{C} \bar{Q}_{S}$ localisation at $S=\left\{1+a a^{*} \mid a \in \bar{Q}\right\}$
Theorem (Van den Bergh,'08)
The algebra A_{Q} has a double quasi-Poisson bracket whose (non-commutative) multiplicative moment map is given by

$$
\Phi=\prod_{\text {order }}\left(1+a a^{*}\right)\left(1+a^{*} a\right)^{-1} \quad \text { (It depends on an order !) }
$$

Examples from quivers

Fix quiver Q. Let $A_{Q}=\mathbb{C} \bar{Q}_{S}$ localisation at $S=\left\{1+a a^{*} \mid a \in \bar{Q}\right\}$
Theorem (Van den Bergh,'08)
The algebra A_{Q} has a double quasi-Poisson bracket whose (non-commutative) multiplicative moment map is given by

$$
\Phi=\prod_{\text {order }}\left(1+a a^{*}\right)\left(1+a^{*} a\right)^{-1} \quad \text { (It depends on an order !) }
$$

- Fix a dimension vector $\alpha \in \mathbb{N}^{I}$, attach $\mathbb{C}^{\alpha_{s}}$ to vertex $s \in I$ of \bar{Q} $\Longrightarrow \operatorname{Rep}\left(A_{Q}, \alpha\right)$ has quasi-Poisson structure (mult. mom. map $\left.\mathcal{X}(\Phi)\right)$

Examples from quivers

Fix quiver Q. Let $A_{Q}=\mathbb{C} \bar{Q}_{S}$ localisation at $S=\left\{1+a a^{*} \mid a \in \bar{Q}\right\}$
Theorem (Van den Bergh,'08)
The algebra A_{Q} has a double quasi-Poisson bracket whose (non-commutative) multiplicative moment map is given by

$$
\Phi=\prod_{\text {order }}\left(1+a a^{*}\right)\left(1+a^{*} a\right)^{-1} \quad \text { (It depends on an order !) }
$$

- Fix a dimension vector $\alpha \in \mathbb{N}^{I}$, attach $\mathbb{C}^{\alpha_{s}}$ to vertex $s \in I$ of \bar{Q}
$\Longrightarrow \operatorname{Rep}\left(A_{Q}, \alpha\right)$ has quasi-Poisson structure (mult. mom. map $\mathcal{X}(\Phi)$)
\Longrightarrow Poisson structure on multiplicative quiver varieties by quasi-Hamiltonian reduction on

$$
\left\{\mathcal{X}(\Phi)=\prod_{s \in I} q_{s} \operatorname{Id}_{\alpha_{s}}\right\} / / \operatorname{GL}(\alpha) \simeq \underbrace{\operatorname{Rep}\left(\Lambda^{q}(Q), \alpha\right) / / \operatorname{GL}(\alpha)}_{\mathcal{M}_{\alpha, q}(Q)}
$$

Fusion and Van den Bergh's proof

By fusion, we obtained $\mathbb{C} \bar{Q}$ from $|Q|$ copies of $\mathbb{C} \bar{Q}_{-}$ Similarly, we can obtain A_{Q} from $|Q|$ copies of $A_{Q_{-}}$('localised' version)

Fusion and Van den Bergh's proof

By fusion, we obtained $\mathbb{C} \bar{Q}$ from $|Q|$ copies of $\mathbb{C} \bar{Q}_{-}$ Similarly, we can obtain A_{Q} from $|Q|$ copies of $A_{Q_{-}}$('localised' version)

Problem: If $\{\{-,-\}$ is a double quasi-Poisson bracket on A, its image after fusion is not a double quasi-Poisson bracket

Fusion and Van den Bergh's proof

By fusion, we obtained $\mathbb{C} \bar{Q}$ from $|Q|$ copies of $\mathbb{C} \bar{Q}_{-}$ Similarly, we can obtain A_{Q} from $|Q|$ copies of $A_{Q_{-}}$('localised' version)

Problem: If $\{\{-,-\}$ is a double quasi-Poisson bracket on A, its image after fusion is not a double quasi-Poisson bracket

Solution: add an extra part to the double bracket See [VdB,'08] and in general [F.,AlgRepTh'??]; NC versions of [AKSM,'02]

Fusion and Van den Bergh's proof

By fusion, we obtained $\mathbb{C} \bar{Q}$ from $|Q|$ copies of $\mathbb{C} \bar{Q}_{-}$ Similarly, we can obtain A_{Q} from $|Q|$ copies of $A_{Q_{-}}$('localised' version)

Problem: If $\{\{-,-\}$ is a double quasi-Poisson bracket on A, its image after fusion is not a double quasi-Poisson bracket

Solution: add an extra part to the double bracket See [VdB,'08] and in general [F.,AlgRepTh'??]; NC versions of [AKSM,'02]

Drawback: the structure depends on the order of the fusion : the fusions $e_{i} \rightarrow e_{j}$ or $e_{j} \rightarrow e_{i}$ give isomorphic algebras, but different double quasi-Poisson brackets!
\rightsquigarrow get Van den Bergh's result from basic case $A_{Q_{-}}$;
the order of fusion is the one used in the multiplicative moment map

Fusion in the quasi-case : example

$\underline{\text { LHS : }} A_{Q_{-}}=\left(\mathbb{C} \bar{Q}_{-}\right)_{1+a a^{*}, 1+a^{*} a}$ has double quasi-Poisson bracket

$$
\{\{a, a\}\}=0=\left\{\left\{a^{*}, a^{*}\right\}, \quad\left\{a, a^{*}\right\}\right\}=e_{2} \otimes e_{1}+\frac{1}{2} a^{*} a \otimes e_{1}+\frac{1}{2} e_{2} \otimes a a^{*}
$$

RHS : $A_{Q_{\circ}} \simeq \mathbb{C}\left\langle a, a^{*}\right\rangle_{1+a a^{*}, 1+a^{*} a}$ has double quasi-Poisson bracket

$$
\begin{aligned}
\{a, a\}\} & =\frac{1}{2}\left(a^{2} \otimes 1-1 \otimes a^{2}\right), \\
\left.\left\{a^{*}, a^{*}\right\}\right\} & =-\frac{1}{2}\left(\left(a^{*}\right)^{2} \otimes 1-1 \otimes\left(a^{*}\right)^{2}\right), \\
\left.\left\{a, a^{*}\right\}\right\} & =1 \otimes 1+\frac{1}{2} a^{*} a \otimes 1+\frac{1}{2} 1 \otimes a a^{*}+\frac{1}{2}\left(a^{*} \otimes a-a \otimes a^{*}\right)
\end{aligned}
$$

(this corresponds to the ordering $a<a^{*}$ in [$\left.\mathrm{VdB},{ }^{\prime} 08\right]$)

Fusion and morphisms I

Recall the drawback of fusion in an algebra with a double quasi-Poisson bracket : performing the fusions $e_{i} \rightarrow e_{j}$ or $e_{j} \rightarrow e_{i}$ gives isomorphic algebras, but different double quasi-Poisson brackets!

Fusion and morphisms I

Recall the drawback of fusion in an algebra with a double quasi-Poisson bracket : performing the fusions $e_{i} \rightarrow e_{j}$ or $e_{j} \rightarrow e_{i}$ gives isomorphic algebras, but different double quasi-Poisson brackets!

Let $\psi: A_{1} \rightarrow A_{2}$ be a morphism of double brackets

Definition

If A_{1}, A_{2} are double quasi-Poisson algebras, ψ is a morphism of double quasi-Poisson algebras.
If A_{1}, A_{2} admit multiplicative moment maps Φ_{1}, Φ_{2} and $\psi\left(\Phi_{1}\right)=\Phi_{2}$, we say that ψ is a morphism of quasi-Hamiltonian algebras.

Fusion and morphisms I

Recall the drawback of fusion in an algebra with a double quasi-Poisson bracket : performing the fusions $e_{i} \rightarrow e_{j}$ or $e_{j} \rightarrow e_{i}$ gives isomorphic algebras, but different double quasi-Poisson brackets!

Let $\psi: A_{1} \rightarrow A_{2}$ be a morphism of double brackets

Definition

If A_{1}, A_{2} are double quasi-Poisson algebras, ψ is a morphism of double quasi-Poisson algebras.
If A_{1}, A_{2} admit multiplicative moment maps Φ_{1}, Φ_{2} and $\psi\left(\Phi_{1}\right)=\Phi_{2}$, we say that ψ is a morphism of quasi-Hamiltonian algebras.

Proposition

If A is a quasi-Hamiltonian algebra, the algebras $A_{i \rightarrow j}$ and $A_{j \rightarrow i}$ obtained by fusion of $e_{i} \rightarrow e_{j}$ and $e_{j} \rightarrow e_{i}$ are isomorphic as quasi-Hamiltonian algebras (with their structure induced by fusion)

Fusion and morphisms II

Proposition

If A is a quasi-Hamiltonian algebra, the algebras $A_{i \rightarrow j}$ and $A_{j \rightarrow i}$ obtained by fusion of $e_{i} \rightarrow e_{j}$ and $e_{j} \rightarrow e_{i}$ are isomorphic as quasi-Hamiltonian algebras (with their structure induced by fusion)

- We need the multiplicative moment map to define the isomorphism, contrary to the Hamiltonian case (this can be slightly relaxed)
- Non-commutative version of [AKSM,'02]

Isomorphism and fusion in the quasi-case : example

$\psi: A_{Q_{\circ}} \rightarrow A_{Q_{\circ}}$ is an isomorphism of quasi-Hamiltonian algebras for the two distinct structures induced by fusion

Morphism for quivers : reversing the arrow

By $\left[\mathrm{VdB},{ }^{\prime} 08\right], A_{Q_{-}} / A_{Q_{-}^{o p}}$ is a quasi-Hamiltonian algebra for

$$
\begin{array}{ll}
\frac{A_{Q_{-}}}{}: & \{-,-\}=\ldots, \Phi=\left(1+a a^{*}\right)\left(1+a^{*} a\right)^{-1}, \\
A_{Q_{-}^{o p}}: & \{-,-\}^{\prime}=\ldots, \Phi^{\prime}=\left(1+b b^{*}\right)\left(1+b^{*} b\right)^{-1}
\end{array}
$$

Morphism for quivers : reversing the arrow

$\bar{Q}_{-}^{o p}$

By $\left[\mathrm{VdB},{ }^{\prime} 08\right], A_{Q_{-}} / A_{Q_{-}^{o p}}$ is a quasi-Hamiltonian algebra for

$$
\begin{array}{ll}
\frac{A_{Q_{-}}}{}: & \{-,-\}=\ldots, \Phi=\left(1+a a^{*}\right)\left(1+a^{*} a\right)^{-1} \\
A_{Q_{-}^{o p}}: & \{-,-\}^{\prime}=\ldots, \Phi^{\prime}=\left(1+b b^{*}\right)\left(1+b^{*} b\right)^{-1}
\end{array}
$$

$\psi: A_{Q_{-}} \rightarrow A_{Q_{-}^{o p}}$ given by $\phi(a)=b^{*}, \phi\left(a^{*}\right)=-\left(1+b b^{*}\right)^{-1} b$, is an isomorphism of quasi-Hamiltonian algebras.
ψ lifts the isomorphism of multiplicative preprojective algebras defined in [Crawley-Boevey - Shaw,'06]

Isomorphic multiplicative quiver varieties

Proposition
$\mathcal{M}_{\alpha, q}^{\Lambda}(Q)$ only depends on α, q and Q seen as an undirected graph, up to isomorphism of Poisson varieties

Isomorphic multiplicative quiver varieties

Proposition

$\mathcal{M}_{\alpha, q}^{\Lambda}(Q)$ only depends on α, q and Q seen as an undirected graph, up to isomorphism of Poisson varieties

Proof.

It suffices to get that the quasi-Hamiltonian algebra structure on A_{Q} given by Van den Bergh only depends on Q seen as an undirected graph, up to isomorphism.

This follows from the case of Q_{-}by fusion.

Main technicality here : changing the order of fusions yields a non-trivial isomorphism, so it seems quite cumbersome to explicitly write down this map in general.

Thank you for your attention

Maxime Fairon
Maxime.Fairon@glasgow.ac.uk

