Around Van den Bergh's double brackets

Maxime Fairon

Laboratoire de Mathématiques d'Orsay Université Paris Saclay

European Non-Associative Algebra Seminar 10/04/2023

Motivation: Kontsevich-Rosenberg principle

Fix (unital) associative algebra A over field k (char(k)= 0)

For $n \geq 1$, n-th representation space $\operatorname{Rep}_n(A)$ is scheme with B-points $\operatorname{Rep}_n(A)(B) := \operatorname{Hom}_{Ala.}(A, \operatorname{Mat}(n \times n, B))$

 $\mathbb{k}[\operatorname{Rep}_n(A)]$ is generated by 'matrix' symbols a_{ij} for $a \in A$, $1 \le i, j \le n$

Motivation: Kontsevich-Rosenberg principle

Fix (unital) associative algebra A over field k (char(k)= 0)

For $n \geq 1$, n-th representation space $\operatorname{Rep}_n(A)$ is scheme with B-points $\operatorname{Rep}_n(A)(B) := \operatorname{Hom}_{Ala.}(A, \operatorname{Mat}(n \times n, B))$

 $\mathbb{k}[\operatorname{Rep}_n(A)]$ is generated by 'matrix' symbols a_{ij} for $a \in A$, $1 \leq i, j \leq n$

Motto: [Kontsevich-Rosenberg,'00]

"A noncommutative structure of some kind on A should give an analogous commutative structure on all schemes $\operatorname{Rep}_n(A)$, $n \geq 1$."

structure S_{nc} in Alg. (e.g. formally smooth) \longrightarrow structure S in Com.Alg. (e.g. smooth)

Van den Bergh's double brackets in 1 slide

 $A^{\otimes 2}:=A\otimes_{\Bbbk}A,\quad \mathrm{mult.}\ (a\otimes b)(c\otimes d)=ac\otimes bd,\quad \mathrm{swap}\ \tau_{(12)}a\otimes b=b\otimes a.$

Definition ([Van den Bergh, double Poisson algebras, '08])

A double bracket on A is a k-bilinear map $\{-,-\}$: $A\times A\to A^{\otimes 2}$ with

(cyclic antisymmetry)

②
$$\{a,bc\}\ = (b \otimes 1) \{a,c\}\ + \{a,b\} (1 \otimes c)$$

(outer derivation)

(inner derivation)

Van den Bergh's double brackets in 1 slide

$$A^{\otimes 2} := A \otimes_{\Bbbk} A, \quad \text{mult. } (a \otimes b)(c \otimes d) = ac \otimes bd, \quad \text{ swap } \tau_{(12)}a \otimes b = b \otimes a.$$

Definition ([Van den Bergh, double Poisson algebras, '08])

A double bracket on A is a \Bbbk -bilinear map $\{\!\{-,-\}\!\}: A\times A\to A^{\otimes 2}$ with

Proposition ([Van den Bergh,'08])

If A is endowed with a double bracket $\{-,-\}$, then $\operatorname{Rep}_n(A)$ admits a unique $\operatorname{GL}_n(\Bbbk)$ -invariant antisymmetric biderivation $\{-,-\}$ satisfying

$$\{a_{ij}, b_{kl}\} = \{\{a, b\}\}'_{kj} \{\{a, b\}\}''_{il}.$$
 (1)

(We write
$$\{a,b\}$$
 =: $\{a,b\}' \otimes \{a,b\}'' \in A^{\otimes 2}$)

Moreover "double Jacobi identity" for $\{-,-\}$ \Rightarrow $\{-,-\}$ is Poisson

Why should we care?

Double brackets are ...

- a starting point for noncommutative Poisson geometry
- related to other important algebraic structures
- useful in the study of integrable systems
- ...

Plan for the talk

- **1** Double brackets and related structures
- Changing the derivation rules

Double Poisson brackets

Definition ([VdB,'08])

A double bracket on A is a \Bbbk -bilinear map $\{\!\{-,-\}\!\}: A\times A\to A^{\otimes 2}$ with

(cyclic antisymmetry)

②
$$\{a,bc\} = (b \otimes 1) \{a,c\} + \{a,b\} (1 \otimes c)$$

(outer derivation)

(inner derivation)

We write:
$$\mathbb{J}ac : A^{\otimes 3} \to A^{\otimes 3}$$
, $\mathbb{J}ac = \sum_{s \in \mathbb{Z}_3} \tau^s_{(123)} \circ (\{\!\{-,-\}\!\} \otimes \mathrm{Id}_A) \circ (\mathrm{Id}_A \otimes \{\!\{-,-\}\!\}) \circ \tau^{-s}_{(123)}$

Double Poisson brackets

Definition ([VdB,'08])

A double bracket on A is a \Bbbk -bilinear map $\{\!\{-,-\}\!\}: A\times A\to A^{\otimes 2}$ with

(cyclic antisymmetry)

②
$$\{a,bc\} = (b \otimes 1) \{a,c\} + \{a,b\} (1 \otimes c)$$

(outer derivation)

(inner derivation)

We write:
$$\mathbb{J}ac: A^{\otimes 3} \to A^{\otimes 3}$$
,

$$\mathbb{J}ac = \sum_{s \in \mathbb{Z}_3} \tau^s_{(123)} \circ (\{\!\{-,-\}\!\} \otimes \mathrm{Id}_A) \circ (\mathrm{Id}_A \otimes \{\!\{-,-\}\!\}) \circ \tau^{-s}_{(123)}$$

Definition ([VdB,'08])

A double bracket $\{\!\{-,-\}\!\}: A\times A\to A^{\otimes 2}$ on A is a double Poisson bracket if $\mathbb{J}\mathrm{ac}\equiv 0.$

Explicitly,
$$\mathbb{J}ac(a,b,c) = \{\!\!\{a,\{\!\!\{b,c\}\!\!\}'\}\!\!\} \otimes \{\!\!\{b,c\}\!\!\}'' + \tau_{(123)} \{\!\!\{b,\{\!\!\{c,a\}\!\!\}'\}\!\!\} \otimes \{\!\!\{c,a\}\!\!\}'' + \tau_{(132)} \{\!\!\{c,\{\!\!\{a,b\}\!\!\}'\}\!\!\} \otimes \{\!\!\{a,b\}\!\!\}'' + \tau_{(132)} \{\!\!\{c,\{\!\!\{a,b\}\!\!\}''\}\!\!\} \otimes \{\!\!\{a,b\}\!\!\}'' + \tau_{(132)} \{\!\!\{a,b\}\!\!\}' + \tau_{(132)} \{\!\!\{a,b\}\!\!\}'' + \tau_{(132)} \{\!\!\{a,b\}\!\!\} \otimes \{\!\!\{a,b\}\!\!\}'' + \tau_{(132)} \{\!\!\{a,b\}\!\!\}' + \tau_{(132)} \{\!\!\{a,b\}\!\!\} + \tau_{(132)} \{\!\!\{a,b\}\!\!\}' + \tau_{(132)} \{\!\!\{a,b\}\!\!\} + \tau_{(1$$

Double Poisson brackets: Examples (1)

Proposition ([VdB,'08])

If $(A, \{\!\{-,-\}\!\})$ is a double Poisson algebra, then $\operatorname{Rep}_n(A)$ admits a unique $\operatorname{GL}_n(\Bbbk)$ -inv. Poisson bracket s.t. $\{a_{ij},b_{kl}\}=\{\!\{a,b\}\!\}'_{kj}$ $\{\!\{a,b\}\!\}''_{il}$, $\forall a,b\in A$

(Lie-Poisson bracket of \mathfrak{gl}_n)

Example (Noncommutative
$$\mathfrak{gl}_n$$
)
$$A = \mathbb{k}[x] \text{ with } \{\!\!\{x,x\}\!\!\} = x \otimes 1 - 1 \otimes x$$

$$\operatorname{Rep}_n(A) \simeq \{X \in \operatorname{Mat}_{n \times n}(\mathbb{k})\} \text{ with elementary functions } x_{ij}(X) := X_{ij}$$

Example (Noncommutative $T^*\mathfrak{gl}_n$)

 $\Rightarrow \{x_{ii}, x_{kl}\} = x_{ki}\delta_{il} - \delta_{ki}x_{il}$

$$A=\Bbbk\langle x,y\rangle \text{ with } \{\!\{x,y\}\!\}=1\otimes 1,\ \{\!\{x,x\}\!\}=0,\ \{\!\{y,y\}\!\}=0$$

$$\operatorname{Rep}_n(A) \simeq \{(X, Y) \in \operatorname{Mat}_{n \times n}(\mathbb{k}) \times \operatorname{Mat}_{n \times n}(\mathbb{k})\}$$

$$\Rightarrow \{x_{ij},y_{kl}\}=\delta_{kj}\delta_{il} \text{ and } \{x_{ij},x_{kl}\}=0=\{y_{ij},y_{kl}\}$$
 (symplectic PB)

Double Poisson brackets: Examples (2)

The previous examples are of the form $A = \mathrm{Ass}(V)$ for vector space V

Observation: if V is a double Lie algebra (= dPA without deriv. rules) then A is a double Poisson algebra

Double Poisson brackets: Examples (2)

The previous examples are of the form $A = \mathrm{Ass}(V)$ for vector space V

Observation: if V is a double Lie algebra (= dPA without deriv. rules) then A is a double Poisson algebra

 $Proposition \ \left([Schedler, '09] \ [Odesskii-Rubtsov-Sokolov, '13] \ [Goncharov-Kolesnikov, '18] \right)$

The following are equivalent:

- A double Lie bracket on $V \simeq \mathbb{k}^n$
- A skew-symmetric solution to AYBE on $Mat(n \times n, k)$
- A skew-symmetric Rota-Baxter operator on $\mathrm{Mat}(n \times n, \Bbbk)$

 \rightsquigarrow classification of solutions to AYBE and RB op. give examples

Double Poisson brackets to Leibniz brackets

Associated bracket

$$[-,-] = \operatorname{m} \circ \{\!\!\{-,-\}\!\!\} : A \times A \to A\,, \qquad [a,b] = \{\!\!\{a,b\}\!\!\}' \, \{\!\!\{a,b\}\!\!\}''$$

Double Poisson brackets to Leibniz brackets

Associated bracket

$$[-,-] = \operatorname{m} \circ \{\!\!\{-,-\}\!\!\} : A \times A \to A\,, \qquad [a,b] = \{\!\!\{a,b\}\!\!\}' \, \{\!\!\{a,b\}\!\!\}''$$

Lemma ([VdB,'08])

$$[a,[b,c]]-[[a,b],c]-[b,[a,c]]=\mathrm{m}\circ(\mathrm{m}\otimes\mathrm{Id}_A)(\mathbb{J}\mathrm{ac}(a,b,c)-\mathbb{J}\mathrm{ac}(b,a,c))$$

$$\leadsto [-,-]$$
 is a *left* Leibniz bracket if $\{\!\{-,-\}\!\}$ is Poisson

Double Poisson brackets to Leibniz brackets

Associated bracket

$$[-,-] = \operatorname{m} \circ \{\!\!\{-,-\}\!\!\} : A \times A \to A\,, \qquad [a,b] = \{\!\!\{a,b\}\!\!\}' \, \{\!\!\{a,b\}\!\!\}''$$

Lemma ([VdB,'08])

$$[a,[b,c]]-[[a,b],c]-[b,[a,c]]=\mathrm{m}\circ(\mathrm{m}\otimes\mathrm{Id}_A)(\mathbb{J}\mathrm{ac}(a,b,c)-\mathbb{J}\mathrm{ac}(b,a,c))$$

$$\leadsto [-,-]$$
 is a left Leibniz bracket if $\{\!\{-,-\}\!\}$ is Poisson

Additional properties:

- $[ab-ba,-]=0 \text{ for any } a,b\in A$

Double Poisson brackets to Lie brackets

Associated bracket $[-,-]=\mathrm{m}\circ\{\!\{-,-\}\!\}:A\times A\to A$ is Leibniz bracket

$$\bullet \ [ab-ba,c]=0 \ \text{for any} \ a,b,c\in A, \qquad \bullet \ [a,-]\in \mathrm{Der}(A)$$

Denote
$$H_0(A):=A/[A,A]$$
 (vector space!) $A
ightarrow a
ightarrow A
ightarrow a_\sharp \in H_0(A)$

Lemma ([VdB,'08])

$$[-,-]$$
 descends to antisym. map $[-,-]_{\sharp}:H_0(A) imes H_0(A) o H_0(A)$

Double Poisson brackets to Lie brackets

Associated bracket $[-,-]=\mathrm{m}\circ\{\!\{-,-\}\!\}:A\times A\to A$ is Leibniz bracket

$$\bullet \ [ab-ba,c]=0 \ \text{for any} \ a,b,c\in A, \qquad \bullet \ [a,-]\in \mathrm{Der}(A)$$

Denote
$$H_0(A) := A/[A,A]$$
 (vector space!) $A \ni a \mapsto a_\sharp \in H_0(A)$

Lemma ([VdB,'08])

$$[-,-]$$
 descends to antisym. map $[-,-]_{\sharp}:H_0(A) imes H_0(A) o H_0(A)$

$$\Rightarrow$$
 $(H_0(A), [-, -]_{\sharp})$ is a Lie algebra.

Double Poisson brackets to Lie brackets

Associated bracket $[-,-]=\mathrm{m}\circ\{\!\{-,-\}\!\}:A\times A\to A$ is Leibniz bracket

$$\bullet \ [ab-ba,c]=0 \ \text{for any} \ a,b,c\in A \text{,} \qquad \bullet \ [a,-]\in \mathrm{Der}(A)$$

Denote
$$H_0(A):=A/[A,A]$$
 (vector space!) $A\ni a\mapsto a_\sharp\in H_0(A)$

Lemma ([VdB,'08])

$$[-,-]$$
 descends to antisym. map $[-,-]_{\sharp}:H_0(A)\times H_0(A)\to H_0(A)$

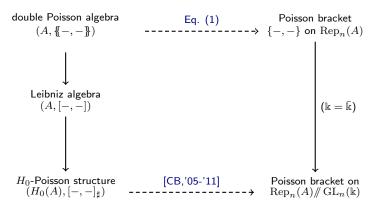
$$\Rightarrow$$
 $(H_0(A), [-,-]_{\sharp})$ is a Lie algebra.

Definition ([Crawley-Boevey,'05-'11])

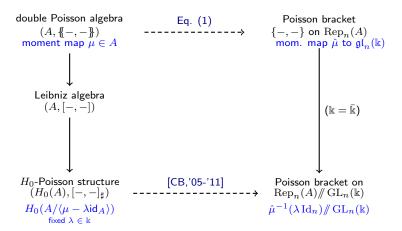
A H_0 -Poisson structure is a Lie bracket $[-,-]_\sharp$ on $H_0(A)$ such that each $[a_\sharp,-]_\sharp$ lifts to some $[a,-]\in \mathrm{Der}(A)$.

$$\Rightarrow \underbrace{(A,\{\!\{-,-\}\!\})}_{\text{double Poisson}} \rightsquigarrow \underbrace{(A,[-,-])}_{\text{Leibniz}} \rightsquigarrow \underbrace{(H_0(A),[-,-]\sharp)}_{H_0\text{-Poisson}}$$

Double Poisson brackets and H_0 -Poisson structures



Double Poisson brackets and H_0 -Poisson structures



Examples: affine quiver varieties from $A=\Bbbk\overline{Q},\ \mu=\sum_{a\in\overline{Q}}\epsilon(a)\,aa^*$ (over base ring!)

double Poisson
$$(A,\{\!\{-,-\}\!\}) \leadsto \mathsf{Poisson}\ (\mathrm{Rep}_n(A)/\!\!/\, \mathrm{GL}_n(\Bbbk),\{-,-\})$$

Which variants induce a Poisson bracket on $\operatorname{Rep}_n(A) /\!\!/ \operatorname{GL}_n(\mathbb{k})$?

double Poisson
$$(A,\{\!\{-,-\}\!\}) \leadsto \mathsf{Poisson} \ (\mathrm{Rep}_n(A)/\!\!/\, \mathrm{GL}_n(\Bbbk), \{-,-\})$$

Which variants induce a Poisson bracket on $\operatorname{Rep}_n(A) /\!\!/ \operatorname{GL}_n(\mathbb{k})$?

• double *quasi*-Poisson bracket [VdB,'08] (relaxing $\mathbb{J}ac = 0$)

```
double Poisson (A,\{\!\{-,-\}\!\}) \leadsto \mathsf{Poisson} \ (\mathrm{Rep}_n(A)/\!\!/\, \mathrm{GL}_n(\Bbbk),\{-,-\})
```

Which variants induce a Poisson bracket on $\operatorname{Rep}_n(A) /\!\!/ \operatorname{GL}_n(\Bbbk)$?

- double *quasi*-Poisson bracket [VdB,'08] (relaxing $\mathbb{J}ac = 0$)
- modified double Poisson bracket [Arthamonov,'17] (skewsymmetry + Jacobi identity "up to commutators") \hookrightarrow from λ -skewsym. Rota-Baxter operators [Goncharov-Gubarev,'22]

```
double Poisson (A,\{\!\{-,-\}\!\}) \leadsto \mathsf{Poisson}\ (\mathrm{Rep}_n(A)/\!\!/\, \mathrm{GL}_n(\Bbbk),\{-,-\})
```

Which variants induce a Poisson bracket on $\operatorname{Rep}_n(A) /\!\!/ \operatorname{GL}_n(\mathbb{k})$?

- double *quasi*-Poisson bracket [VdB,'08] (relaxing $\mathbb{J}ac = 0$)
- modified double Poisson bracket [Arthamonov,'17] (skewsymmetry + Jacobi identity "up to commutators") \hookrightarrow from λ -skewsym. Rota-Baxter operators [Goncharov-Gubarev,'22]
- Modifying the Leibniz rules [F.-McCulloch,'23]
- Also pre-Calabi-Yau algebras, ... but a whole different story!

Plan for the talk

- Double brackets and related structures
- 2 Changing the derivation rules

Rewriting double brackets

Consider the following A-bimodule structures on $A \otimes A$

Outer bimodule:
$$a \cdot_{out} (d' \otimes d'') \cdot_{out} b = ad' \otimes d''b$$

Inner bimodule: $a \cdot_{in} (d' \otimes d'') \cdot_{in} b = d'b \otimes ad''$

Definition ([Van den Bergh, double Poisson algebras, '08])

A double bracket on A is a k-bilinear map $\{-,-\}$: $A\times A\to A^{\otimes 2}$ with

(cyclic antisymmetry)

2
$$\{a, bc\} = b \cdot_{out} \{a, c\} + \{a, b\} \cdot_{out} c$$

(outer derivation)

(inner derivation)

Rewriting double brackets

Consider the following A-bimodule structures on $A \otimes A$

Outer bimodule:
$$a \cdot_{out} (d' \otimes d'') \cdot_{out} b = ad' \otimes d''b$$

Inner bimodule: $a \cdot_{in} (d' \otimes d'') \cdot_{in} b = d'b \otimes ad''$

Definition ([Van den Bergh, double Poisson algebras, '08])

A double bracket on A is a \Bbbk -bilinear map $\{\!\{-,-\}\!\}: A\times A\to A^{\otimes 2}$ with

Observation I: $1+2 \Rightarrow 3$ because \cdot_{in} is the swap of \cdot_{out} : $a \cdot_{in} (d' \otimes d'') \cdot_{in} b = \tau_{(12)} (a \cdot_{out} (\tau_{(12)} d' \otimes d'') \cdot_{out} b)$

Rewriting double brackets

Consider the following A-bimodule structures on $A \otimes A$

Outer bimodule: $a \cdot_{out} (d' \otimes d'') \cdot_{out} b = ad' \otimes d''b$

Inner bimodule: $a \cdot_{in} (d' \otimes d'') \cdot_{in} b = d'b \otimes ad''$

Definition ([Van den Bergh, double Poisson algebras, '08])

A double bracket on A is a \Bbbk -bilinear map $\{\!\{-,-\}\!\}: A\times A\to A^{\otimes 2}$ with

(cyclic antisymmetry)

②
$$\{a, bc\} = b \cdot_{out} \{a, c\} + \{a, b\} \cdot_{out} c$$

(outer derivation)

(inner derivation)

Observation I: $1+2 \Rightarrow 3$ because \cdot_{in} is the swap of \cdot_{out} :

$$a \cdot_{in} (d' \otimes d'') \cdot_{in} b = \tau_{(12)} (a \cdot_{out} (\tau_{(12)} d' \otimes d'') \cdot_{out} b)$$

Observation II: well-def. derivations because \cdot_{out} is **swap-commuting** $a_i \cdot_{in} (a_o \cdot_{out} d' \otimes d'' \cdot_{out} b_o) \cdot_{in} b_i = a_o \cdot_{out} (a_i \cdot_{in} d' \otimes d'' \cdot_{in} b_i) \cdot_{out} b_o$

Condition on bimodules

Definition (for bimodule denoted \cdot (i.e. A-bimodule on $A \otimes A$))

The *swap* of \cdot is the bimodule * defined through

$$a*(d'\otimes d'')*b=\tau_{(12)}\big(a\cdot(\tau_{(12)}\,d'\otimes d'')\cdot b\big)$$

The bimodule \cdot is *swap-commuting* if \cdot commutes with *:

$$a_1 \cdot (a_2 * d' \otimes d'' * b_2) \cdot b_1 = a_2 * (a_1 \cdot d' \otimes d'' \cdot b_1) * b_2$$

Condition on bimodules

Definition (for bimodule denoted \cdot (i.e. A-bimodule on $A \otimes A$))

The *swap* of
$$\cdot$$
 is the bimodule $*$ defined through

$$a*(d'\otimes d'')*b=\tau_{(12)}\big(a\cdot(\tau_{(12)}\,d'\otimes d'')\cdot b\big)$$

The bimodule \cdot is *swap-commuting* if \cdot commutes with *:

$$a_1 \cdot (a_2 * d' \otimes d'' * b_2) \cdot b_1 = a_2 * (a_1 \cdot d' \otimes d'' \cdot b_1) * b_2$$

Example

$$a \cdot_l d \cdot_l b = ad'b \otimes d''$$
, (left bimodule structure); $a \cdot_r d \cdot_r b = d' \otimes ad''b$, (right bimodule structure); $a \cdot_{out} d \cdot_{out} b = ad' \otimes d''b$, (outer bimodule structure); $a \cdot_{in} d \cdot_{in} b = d'b \otimes ad''$, (inner bimodule structure).

Condition on bimodules

Definition (for bimodule denoted \cdot (i.e. A-bimodule on $A \otimes A$))

The swap of \cdot is the bimodule * defined through

$$a*(d'\otimes d'')*b=\tau_{(12)}\big(a\cdot(\tau_{(12)}\,d'\otimes d'')\cdot b\big)$$

The bimodule \cdot is *swap-commuting* if \cdot commutes with *:

$$a_1 \cdot (a_2 * d' \otimes d'' * b_2) \cdot b_1 = a_2 * (a_1 \cdot d' \otimes d'' \cdot b_1) * b_2$$

Example

$$\begin{array}{ll} a\cdot_l d\cdot_l b = ad'b\otimes d''\,, & \text{ (left bimodule structure);} \\ a\cdot_r d\cdot_r b = d'\otimes ad''b\,, & \text{ (right bimodule structure);} \\ a\cdot_{out} d\cdot_{out} b = ad'\otimes d''b\,, & \text{ (outer bimodule structure);} \\ a\cdot_{in} d\cdot_{in} b = d'b\otimes ad''\,, & \text{ (inner bimodule structure).} \end{array}$$

- If \cdot is swap-commuting, then * is also
- Can "twist" by $\alpha, \beta \in \operatorname{Aut}(A)$, e.g. $a \cdot_l^{\alpha,\beta} d \cdot_l^{\alpha,\beta} b = \alpha(a) d'\beta(b) \otimes d''$

(Generalized) double brackets

From now on, we follow [F.-McCulloch,'23]

Definition

Fix a swap-commuting A-bimodule \cdot with swap *

A double bracket (associated with \cdot) on A is a k-bilinear map

$$\{\!\!\{-,-\}\!\!\}:A\times A\to A^{\otimes 2}$$
 with

(cyclic antisymmetry)

(derivation on the right by $\cdot\,)$

(derivation on the left by \ast)

(Generalized) double brackets

From now on, we follow [F.-McCulloch,'23]

Definition

Fix a swap-commuting A-bimodule \cdot with swap *

A double bracket (associated with \cdot) on A is a k-bilinear map

$$\{\!\!\{-,-\}\!\!\}:A\times A\to A^{\otimes 2}$$
 with

(cyclic antisymmetry)

(derivation on the right by $\cdot\,)$

(derivation on the left by \ast)

Take $\cdot = \cdot_{out} \leadsto \mathsf{Van}$ den Bergh's theory from Part I

Remark: can go from $\{\!\{-,-\}\!\}$ to $\tau_{(12)}\circ \{\!\{-,-\}\!\}$ by replacing \cdot with * \Rightarrow "equivalent" theories for double brackets associated with \cdot and *

The inner case

We consider a double bracket $\{\!\{-,-\}\!\}$ associated with inner bimodule \cdot_{in} \leadsto expect to get analogues of VdB's results

The inner case

We consider a double bracket $\{\!\{-,-\}\!\}$ associated with inner bimodule \cdot_{in} \leadsto expect to get analogues of VdB's results

• $\mathbb{J}\mathrm{ac}$ "behaves well" \leadsto double *Poisson* bracket when $\mathbb{J}\mathrm{ac} \equiv 0$

The inner case

We consider a double bracket $\{\!\{-,-\}\!\}$ associated with inner bimodule \cdot_{in} \leadsto expect to get analogues of VdB's results

• $\mathbb{J}\mathrm{ac}$ "behaves well" \leadsto double *Poisson* bracket when $\mathbb{J}\mathrm{ac} \equiv 0$

Proposition (For a double Poisson bracket associated with \cdot_{in})

- 1. $[-,-]_{in} := m \circ \{\!\{-,-\}\!\}$ is a **right** Leibniz bracket such that $[-,a]_{in} \in \operatorname{Der}(A)$ and $[-,ab-ba]_{in} = 0$
- 2. $[-,-]_{in}$ descends to a Lie bracket $[-,-]_{in,\sharp}$ on $H_0(A)$ $\rightsquigarrow H_0$ -Poissons structure (in right entry) on $H_0(A)$

The inner case

We consider a double bracket $\{\!\{-,-\}\!\}$ associated with inner bimodule \cdot_{in} \leadsto expect to get analogues of VdB's results

• $\mathbb{J}\mathrm{ac}$ "behaves well" \leadsto double *Poisson* bracket when $\mathbb{J}\mathrm{ac} \equiv 0$

Proposition (For a double Poisson bracket associated with \cdot_{in})

- 1. $[-,-]_{in} := m \circ \{\!\{-,-\}\!\}$ is a **right** Leibniz bracket such that $[-,a]_{in} \in \operatorname{Der}(A)$ and $[-,ab-ba]_{in} = 0$
- 2. $[-,-]_{in}$ descends to a Lie bracket $[-,-]_{in,\sharp}$ on $H_0(A)$ $\leadsto H_0$ -Poissons structure (in right entry) on $H_0(A)$

Furthermore:

- 3. Rep_n(A) admits a unique $GL_n(\mathbb{k})$ -inv. Poisson bracket such that $\{a_{ij},b_{kl}\}=\{a,b\}_{il}''\{a,b\}_{ki}'', \forall a,b\in A.$
- 4. It descends to a Poisson bracket on $\operatorname{Rep}_n(A) /\!\!/ \operatorname{GL}_n(\mathbb{k})$

Double Jacobi identity

Crucial fact needed in the outer/inner cases:

• Jac is a derivation in each argument for some bimodule struct. on $A^{\otimes 3}$

When true: $\mathbb{J}\mathrm{ac} \equiv 0$ iff $\mathbb{J}\mathrm{ac}(a,b,c) = 0$ for generators $a,b,c \in A$

Double Jacobi identity

Crucial fact needed in the outer/inner cases:

• Jac is a derivation in each argument for some bimodule struct. on $A^{\otimes 3}$

When true: $\mathbb{J}\mathrm{ac} \equiv 0$ iff $\mathbb{J}\mathrm{ac}(a,b,c) = 0$ for generators $a,b,c \in A$

Example ($\{-,-\}$ associated with *right* bimodule)

 $A = \mathbb{k}\langle x,y\rangle$ and $\lambda \in \mathbb{k}^{\times}$. Double bracket associated with \cdot_r for

$$\{\!\!\{x,x\}\!\!\} = 0, \quad \{\!\!\{y,y\}\!\!\} = 0, \quad \{\!\!\{x,y\}\!\!\} = \lambda\,1\otimes1.$$

$$\mathbb{J}\mathrm{ac}(x,x,x)=\mathbb{J}\mathrm{ac}(x,x,y)=\mathbb{J}\mathrm{ac}(x,y,y)=0$$
 (also for $x\leftrightarrow y$)

BUT
$$\operatorname{Jac}(x, x, y^2) = -2\lambda^2 \, 1 \otimes 1 \otimes 1$$
.

→ may need a weaker form of double Jacobi identity

weak Jacobiator

Definition $(\{-,-\})$ for some swap-commuting bimodule)

Let $\sigma, \sigma' \in \{(12), (13), (23)\}$. The $[\sigma, \sigma']$ -weak double Jacobiator of $\{\!\{-, -\}\!\}$ is the map $[\sigma, \sigma']$ wk $\mathbb{J}\mathrm{ac}: A^{\times 3} \to A^{\otimes 3}$ given by

$$[\sigma, \sigma']$$
wk \mathbb{J} ac = \mathbb{J} ac - $\tau_{\sigma}^{-1} \circ \mathbb{J}$ ac $\circ \tau_{\sigma'}$.

(Here, τ_{σ} is natural permut. on $A^{\otimes 3}$. E.g. $\tau_{(13)}a_1\otimes a_2\otimes a_3=a_3\otimes a_2\otimes a_1$)

Definition

If $[\sigma,\sigma']$ wk \mathbb{J} ac $\equiv 0$, say $\{\!\{-,-\}\!\}$ is a double $[\sigma,\sigma']$ -weak Poisson bracket. (Called double σ -weak Poisson bracket if $\sigma=\sigma'$.)

weak Jacobiator

Definition $(\{-,-\})$ for some swap-commuting bimodule)

Let $\sigma, \sigma' \in \{(12), (13), (23)\}$. The $[\sigma, \sigma']$ -weak double Jacobiator of $\{-, -\}$ is the map $[\sigma, \sigma']$ wk \mathbb{J} ac : $A^{\times 3} \to A^{\otimes 3}$ given by

$$[\sigma,\sigma'] \text{wkJac} = \mathbb{J}\text{ac} - \tau_{\sigma}^{-1} \circ \mathbb{J}\text{ac} \circ \tau_{\sigma'}.$$
(Here, τ_{σ} is natural permut. on $A^{\otimes 3}$. E.g. $\tau_{(13)}a_1 \otimes a_2 \otimes a_3 = a_3 \otimes a_2 \otimes a_1$)

Definition

If $[\sigma,\sigma'] wk \mathbb{J}ac \equiv 0$, say $\{\!\{-,-\}\!\}$ is a double $[\sigma,\sigma']$ -weak Poisson bracket. (Called double σ -weak Poisson bracket if $\sigma=\sigma'$.)

Proposition (By cyclic symmetry: $\tau_{(123)} \circ [\sigma, \sigma']$ wk \mathbb{J} ac $\circ \tau_{(123)}^{-1} = [\sigma, \sigma']$ wk \mathbb{J} ac)

There are 3 classes of distinct double σ -weak Poisson bracket

- 1.a. double (12)-weak Poisson brackets (when $\sigma = \sigma'$) 1.b. double [(12), (13)]-weak Poisson brackets
 - 2. double [(12), (23)]-weak Poisson brackets

The right case (1)

We consider a double bracket $\{\!\{-,-\}\!\}$ associated with right bimodule \cdot_r \leadsto expect to get <u>differences</u> with VdB's outer case

The right case (1)

We consider a double bracket $\{\!\{-,-\}\!\}$ associated with right bimodule \cdot_r \leadsto expect to get <u>differences</u> with VdB's outer case

- ullet $\operatorname{\mathbb{J}ac}$ "behaves badly" (not a derivation $A o A^{\otimes 3}$ in each argument)
- $[\sigma, \sigma']$ wk \mathbb{J} ac "behaves well" for $\sigma = \sigma' = (12)$ \rightsquigarrow double (12)-weak Poisson bracket when (12)wk \mathbb{J} ac $\equiv 0$

The right case (1)

We consider a double bracket $\{-,-\}$ associated with right bimodule \cdot_r \leadsto expect to get <u>differences</u> with VdB's outer case

- $\mathbb{J}\mathrm{ac}$ "behaves badly" (not a derivation $A o A^{\otimes 3}$ in each argument)
- $[\sigma, \sigma']$ wk \mathbb{J} ac "behaves well" for $\sigma = \sigma' = (12)$
- \leadsto double (12)-weak Poisson bracket when (12)wk ${\mathbb J}ac\equiv 0$

Proposition (For a double (12)-weak Poisson bracket associated with \cdot_r)

- 1. The double bracket descends to maps
- $\{ -, \} : H_0(A) \times A \to H_0(A) \otimes A, \quad \{ -, \} : A \times H_0(A) \to A \otimes H_0(A),$ which are derivations in their "A" factor.
- 2. Both maps descend to the same operation

$$\bullet \{\!\!\{-,-\}\!\!\}_{\bullet} : H_0(A) \times H_0(A) \to H_0(A) \otimes H_0(A)$$
 which uniquely extends to a Poisson bracket on $Sym(H_0(A))$ if $\{\!\!\{-,-\}\!\!\}$ is

a double (12)-weak Poisson bracket.

The right case (2)

We consider a double bracket $\{\!\{-,-\}\!\}$ associated with right bimodule \cdot_r Assume it is a double (12)-weak Poisson bracket.

Proposition (continued)

- **3.** Rep_n(A) admits a unique $GL_n(\mathbb{k})$ -inv. Poisson bracket such that $\{a_{ij},b_{kl}\}=\{\!\{a,b\}\!\}'_{ij}$ $\{\!\{a,b\}\!\}''_{kl}, \forall a,b\in A$.
- **4.** It descends to a Poisson bracket on $\operatorname{Rep}_n(A) /\!\!/ \operatorname{GL}_n(\Bbbk)$

Remark. In matrix notations, the induced Poisson bracket on $\operatorname{Rep}_n(A)$ follows the conventions of the "tensor notation" $\{-\stackrel{\otimes}{,}-\}$ from mathematical physics (e.g. used in connection to r-matrices, ...)

We consider a double bracket $\{\!\{-,-\}\!\}$ associated with left bimodule \cdot_l \leadsto expect to get analogues of right case (because equivalent under swap)

¹Question. Is there a bimodule structure on $A \otimes A$ for which the notion of double

We consider a double bracket $\{\!\{-,-\}\!\}$ associated with left bimodule \cdot_l \leadsto expect to get analogues of right case (because equivalent under swap)

- $[\sigma,\sigma']$ wk \mathbb{J} ac "behaves well" for $\sigma=(12)$, $\sigma'=(13)$
- \leadsto double [(12),(13)]-weak Poisson brackets are interesting for \cdot_l

 $^{^1}$ Question. Is there a bimodule structure on $A \otimes A$ for which the notion of double

^[(12), (23)]-weak Poisson brackets is meaningful?

We consider a double bracket $\{\!\{-,-\}\!\}$ associated with left bimodule \cdot_l \leadsto expect to get analogues of right case (because equivalent under swap)

- $[\sigma, \sigma']$ wk \mathbb{J} ac "behaves well" for $\sigma = (12)$, $\sigma' = (13)$
- \leadsto double [(12),(13)]-weak Poisson brackets are interesting 1 for \cdot_{l}

Proposition (For a double [(12),(13)]-weak Poisson bracket assoc. with \cdot_l)

2'. The double bracket descends to a map

$$\{-,-\}$$
 : $H_0(A) \times H_0(A) \to H_0(A) \otimes H_0(A)$

which uniquely extends to a Poisson bracket on $Sym(H_0(A))$.

¹Question. Is there a bimodule structure on $A \otimes A$ for which the notion of double [(12), (23)]-weak Poisson brackets is meaningful?

We consider a double bracket $\{-,-\}$ associated with left bimodule \cdot_l → expect to get analogues of right case (because equivalent under swap)

- $[\sigma, \sigma']$ wkJac "behaves well" for $\sigma = (12), \sigma' = (13)$
- \rightsquigarrow double [(12), (13)]-weak Poisson brackets are interesting for \cdot_1

Proposition (For a double [(12), (13)]-weak Poisson bracket assoc. with \cdot_l)

2'. The double bracket descends to a map

$$\{-,-\}$$
 : $H_0(A) \times H_0(A) \to H_0(A) \otimes H_0(A)$

which uniquely extends to a Poisson bracket on $Sym(H_0(A))$.

- **3'.** Rep_n(A) admits a unique $GL_n(\mathbb{k})$ -inv. Poisson bracket such that $\{a_{ij}, b_{kl}\} = \{\{a, b\}\}'_{kl} \{\{a, b\}\}''_{ij}, \forall a, b \in A.$
- **4'**. It descends to $\operatorname{Rep}_n(A) /\!\!/ \operatorname{GL}_n(\mathbb{k})$.

¹Question. Is there a bimodule structure on $A \otimes A$ for which the notion of double [(12), (23)]-weak Poisson brackets is meaningful? 4□ > 4□ > 4□ > 4□ > 4□ > 900

Thank you for your attention

Maxime Fairon

maxime.fairon@universite-paris-saclay.fr

www.imo.universite-paris-saclay.fr/en/perso/maxime-fairon/double-brackets/

