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Classical Poisson cohomology (1)

Fix a commutative associative k-algebra A

Recall (A, {−,−}) is a Poisson algebra if {−,−} : A⊗A → A linear s.t.

(skewsymmetry) {x, y} = −{y, x}
(Leibniz rules) {x, yz} = y{x, z}+ {x, y}z , {xy, z} = x{y, z}+ {x, z}y
(Jacobi identity) {x, {y, z}} − {y, {x, z}} = {{x, y}, z}

Xn(A) ⊂ Hom(∧nA,A) spanned by elements P s.t.
P (ab, a2, . . . , an) = aP (b, a2, . . . , an) + bP (a, a2, . . . , an) .

δnCE(P )(x1, . . . , xn+1) =
∑

1≤i≤n+1

(−1)i+1{xi, P (x1,
i
ˇ. . ., xn+1)}

+
∑

1≤i<j≤n+1

(−1)i+jP ({xi, xj}, x1,
i
ˇ. . .,

j

ˇ. . ., xn+1) .

From CE differential ⇝ HCE(A) := H(X(A), δCE).



Classical Poisson cohomology (1)

Fix a commutative associative k-algebra A

Recall (A, {−,−}) is a Poisson algebra if {−,−} : A⊗A → A linear s.t.

(skewsymmetry) {x, y} = −{y, x}
(Leibniz rules) {x, yz} = y{x, z}+ {x, y}z , {xy, z} = x{y, z}+ {x, z}y
(Jacobi identity) {x, {y, z}} − {y, {x, z}} = {{x, y}, z}

Xn(A) ⊂ Hom(∧nA,A) spanned by elements P s.t.
P (ab, a2, . . . , an) = aP (b, a2, . . . , an) + bP (a, a2, . . . , an) .

δnCE(P )(x1, . . . , xn+1) =
∑

1≤i≤n+1

(−1)i+1{xi, P (x1,
i
ˇ. . ., xn+1)}

+
∑

1≤i<j≤n+1

(−1)i+jP ({xi, xj}, x1,
i
ˇ. . .,

j

ˇ. . ., xn+1) .

From CE differential ⇝ HCE(A) := H(X(A), δCE).



Classical Poisson cohomology (2)

Schouten-Nijenhuis bracket [−,−]SN on Xk(A) (P ∈ Xk(A), Q ∈ Xl(A))

[P,Q]SN(a1, . . . , ak+l−1)

=(−1)(k−1)(l−1)
∑

σ∈Sl,k−1

sgn(σ)P (Q(aσ(1), . . . , aσ(l)), aσ(l+1), . . . , aσ(k+l−1))

−
∑

σ∈Sk,l−1

sgn(σ)Q(P (aσ(1), . . . , aσ(k)), aσ(k+1), . . . , aσ(k+l−1)) ,

⇝ (X(A), [−,−]SN) is a graded Lie algebra of degree −1, in particular
[x, [y, z]SN]SN − (−1)(|x|−1)(|y|−1)[y, [x, z]SN]SN = [[x, y]SN, z]SN

dΠ := [Π,−]SN, Π ∈ X2(A) s.t. [Π,Π]SN = 0

⇝ PH(A) := H(X(A),dΠ)

For {−,−}Π : A×A → A, {a, b}Π := Π(a, b), get dΠ = δCE

⇝ HCE(A) ≃ PH(A)



Classical Poisson cohomology (2)

Schouten-Nijenhuis bracket [−,−]SN on Xk(A) (P ∈ Xk(A), Q ∈ Xl(A))

[P,Q]SN(a1, . . . , ak+l−1)

=(−1)(k−1)(l−1)
∑

σ∈Sl,k−1

sgn(σ)P (Q(aσ(1), . . . , aσ(l)), aσ(l+1), . . . , aσ(k+l−1))

−
∑

σ∈Sk,l−1

sgn(σ)Q(P (aσ(1), . . . , aσ(k)), aσ(k+1), . . . , aσ(k+l−1)) ,

⇝ (X(A), [−,−]SN) is a graded Lie algebra of degree −1, in particular
[x, [y, z]SN]SN − (−1)(|x|−1)(|y|−1)[y, [x, z]SN]SN = [[x, y]SN, z]SN

dΠ := [Π,−]SN, Π ∈ X2(A) s.t. [Π,Π]SN = 0

⇝ PH(A) := H(X(A),dΠ)

For {−,−}Π : A×A → A, {a, b}Π := Π(a, b), get dΠ = δCE

⇝ HCE(A) ≃ PH(A)



Kontsevich-Rosenberg principle

Field k char. 0, k = k

Following [Kontsevich, ’93] and [Kontsevich-Rosenberg, ’99] (N ∈ N×)

associative k-algebra → commutative k-algebra
A −→ AN := k[Rep(A, N)]

AN is generated by symbols aij , ∀a ∈ A, 1 ≤ i, j ≤ N .
Rules : 1ij = δij , (a+ b)ij = aij + bij , (ab)ij =

∑
k aikbkj .

Goal: Find a property Pnc on A that gives the usual property P
on AN for all N ∈ N×

Question: Can we induce a Poisson bracket and its Poisson cohomology?
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Double (Poisson) brackets

A is a unital associative fin. gen. algebra over k, ⊗ := ⊗k

Definition ([Van den Bergh,’08])

A double bracket is a k-linear map {{−,−}} : A⊗A → A⊗A s.t.

1 {{a, b}} = −τ(12) {{b, a}} (cyclic skewsymmetry)

2 {{a, bc}} = (b⊗ 1) {{a, c}}+ {{a, b}} (1⊗ c) (outer derivation)

3 {{ad, b}} = (1⊗ a) {{d, b}}+ {{a, b}} (d⊗ 1) (inner derivation)

A double bracket is Poisson if “double Jacobiator” DJac : A⊗3 → A⊗3,

DJac(a, b, c) = {{a, {{b, c}}}}L + τ(123) {{b, {{c, a}}}}L + τ(132) {{c, {{a, b}}}}L
is identically zero.

In the def, we use {{a,X ′ ⊗X ′′}}L := {{a,X ′}} ⊗X ′′

More generally, B-linear version that I will omit



DPA : examples

Key property: enough to define {{−,−}} on generators

Example

Take k[x] (or any quotient k[x]/(xk)).
{{x, x}} = x⊗ 1− 1⊗ x

Example

Take k⟨x, y⟩
{{x, y}} = 1⊗ 1, {{x, x}} = 0, {{y, y}} = 0



Relation to the Kontsevich-Rosenberg principle

AN generated by symbols aij , ∀a ∈ A, 1 ≤ i, j ≤ N .
Rules : 1ij = δij , (a+ b)ij = aij + bij , (ab)ij =

∑
k aikbkj .

Theorem (Van den Bergh,’08)

If A has a double bracket {{−,−}}, then for any N ≥ 1
AN := k[Rep(A, N)] has an antisymmetric biderivation {−,−} defined by

{aij , bkl} = {{a, b}}′kj {{a, b}}′′il .
If {{−,−}} is Poisson, then {−,−} is a Poisson bracket.

Proof.

Jac(aij , bkl, cuv) = DJac(a, b, c)uj,il,kv − DJac(a, c, b)kj,iv,ul

⇒ Set tr(c) :=
∑

j cjj . Then {tr(a), tr(b)} = tr(m ◦ {{a, b}}) defines a
Poisson bracket on the invariant subalgebra AGLN

N .
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DPA : examples and representations

Example

Take k[x] (or any quotient k[x]/(xr))
{{x, x}} = x⊗ 1− 1⊗ x
Induces PB of glN ≃ k[Rep(k[x], N)] (or nilpotent matrices of order r)

Example

Take k⟨x, y⟩
{{x, y}} = 1⊗ 1, {{x, x}} = 0, {{y, y}} = 0
Induces PB of T ∗glN ≃ k[Rep(k⟨x, y⟩, N)]

⇝ Second example extends to any path algebra of quiver !



multibrackets and NC forms

A n-bracket on A is a linear map {{−, . . . ,−}} : A⊗n → A⊗n such that
(cyclic skewsymmetry) + (Leibniz rule), i.e.

{{a1, a2, . . . , an}}= (−1)n−1 {{a2, . . . , an, a1}}σ,
{{a1, . . . , an−1, bc}}= b {{a1, . . . , an−1, c}}+ {{a1, . . . , an−1, b}} c .

BR(A)n = spank{all n-brackets}, BR(A) := ⊕n≥1BR(A)n

Completed in degree 0 : B̂R(A) = ⊕n≥0B̂R(A)n with

B̂R(A)0 = A♯ := A/[A,A] and B̂R(A)n = BR(A)n

A-bimodule of double derivations
Der(A) := {D ∈ Homk(A,A⊗2) | D(ab) = aD(b) +D(a) b}

Noncommutative multivector fields: T∗A := TADer(A)
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Differential DPA

Proposition (Van den Bergh,’08)

For n ≥ 1, there is a well-defined map µn : (T∗A)n −→ B̂R(A)n,

µn(Q) := {{−, . . . ,−}}Q =
∑

0≤i≤n−1(−1)(n−1)iσi ◦ {{−, . . . ,−}}∼Q ◦ σ−i

obtained k-linearly from (aj ∈ A and δj ∈ Der(A))
{{a1, . . . , an}}∼δ1...δn := δn(an)

′δ1(a1)
′′ ⊗ δ1(a1)

′δ2(a2)
′′ ⊗ · · · ⊗ δn−1(an−1)

′δn(an)
′′

Moreover, µn factors through (T∗A)♯,n, i.e. µn(Q) only depends on Q
modulo graded commutators.

Under some assumptions, all µn are isomorphisms [Van den Bergh,’08]

A double bracket {{−,−}} is differential if {{−,−}} = µ2(P ), P ∈ (T∗A)2

Example

{{x, x}} = x⊗ 1− 1⊗ x is differential on k[x], but not on k[x]/(xk), k ≥ 2.
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What we are going to see...

Recall for the standard case:

HCE(A) = H(X(A), δCE) defined from {−,−}
PH(A) = H(X(A), dΠ = [Π,−]SN) defined from bivector Π

One has HCE(A) ≃ PH(A)

At the NC level:

• d̂PH(A) defined on B̂R(A) from a double Poisson bracket

(this is the new approach of [F.-Valeri,2509.21232])

• dPH(A) defined on (T∗A)♯, dP = {P,−}SN
(approach of [Pichereau-Van de Weyer,’08; math/0701837])

• (µn)n induce a linear map dPH(A) → d̂PH(A)

if the double Poisson bracket is µ2(P )

See also [Chemla,’20; 1712.05619] for double Lie-Rinehart algebra cohomologies

and [Zheng-Tan, private comm.] for a version of {−,−}SN on B̂R(A)



NC analogue of SN bracket

Theorem (Van den Bergh,’08)

There is a unique graded double Poisson bracket {{−,−}}SN of degree −1
on T∗A determined by (a, b ∈ A and δ,∆ ∈ Der(A))

{{a, b}}SN = 0 , {{δ, a}}SN = δ(a) ,

{{δ,∆}}SN = τ(23)

(
(δ ⊗ IdA) ◦∆− (IdA ⊗∆) ◦ δ

)
+ τ(12)

(
(IdA ⊗δ) ◦∆− (∆⊗ IdA) ◦ δ

)
.

⇝ (T∗A)♯ inherits a graded Lie bracket {−,−}SN := m ◦ {{−,−}}SN.

A differential double bracket µ2(P ) is Poisson iff {P, P}SN = 0 in (T∗A)♯

⇝ dP :={P,−}SN is a square-zero differential on (T∗A)♯ if {P, P}SN=0

⇝ Double Poisson cohomology: dPH(A) = H((T∗A)♯,dP )
[Van de Weyer,’08], [Pichereau-Van de Weyer,’08]
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From dPA cohomology to PA cohomology

⇝ dP :={P,−}SN is a square-zero differential on (T∗A)♯ if {P, P}SN=0
⇝ Double Poisson cohomology: dPH(A) = H((T∗A)♯,dP )

Theorem (Pichereau-Van de Weyer,’08)

If P ∈ (T∗A)♯,2 satisfies {P, P}SN = 0, there is a morphism of complexes
tr : ((T∗A)♯,dP ) −→ (X(AN ),dtr(P )), Q 7→ tr(Q),

which descends to a linear map dPH(A) → PH(AN ) in cohomology.
Furthermore, by GLn-invariance, get a linear map dPH(A) → PH(AGLn

n ).

0 (T∗A)♯,0 (T∗A)♯,1 (T∗A)♯,2 (T∗A)♯,3 · · ·
dP dP dP

0 AGLn
n X1(An)

GLn X2(An)
GLn X3(An)

GLn · · ·
dtr(P ) dtr(P ) dtr(P )

tr tr tr tr

0 AGLn
n X1(AGLn

n ) X2(AGLn
n ) X3(AGLn

n ) · · ·
dtr(P ) dtr(P ) dtr(P )



What else?

In [Van de Weyer,’08], [Pichereau-Van de Weyer,’08], computation of several
cohomology groups.

BUT

calculations are tedious;

there is no cohomology theory if the double Poisson bracket is not
differential!

one misses a “Chevalley-Eilenberg” version of this construction.
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The differential

We follow Chapter 4 of [F-Valeri,2509.21232]

Recall: B̂R(A) = ⊕n≥0B̂R(A)n with

B̂R(A)0 = A♯ := A/[A,A] and B̂R(A)n = spank{all n-brackets}

We denote the double Poisson bracket as J−,−K

Definition

d̂ : B̂R(A) → ⊕n≥0Homk(A⊗(n+1),A⊗(n+1)) is defined in deg 0 by

d̂(ā) : A → A, d̂(ā) := −m ◦ Ja,−K , (a ∈ A is a lift of ā ∈ A♯)

and in degree n ≥ 1 by ({{−}} ∈ B̂R(A)n)

d̂({{−}}) :=
∑

s∈Zn+1

(−1)nsσs ◦ ({{−}} ⊗ IdA) ◦ (Id⊗(n−1)
A ⊗J−,−K) ◦ σ−s

+ (−1)n
∑

s∈Zn+1

(−1)nsσs ◦ (J−,−K ⊗ Id
⊗(n−1)
A ) ◦ (IdA ⊗{{−}}) ◦ σ−s .



The cohomology

Recall that we work over k, although everything works over B ↪→ A

Theorem

Consider the operation d̂ from the previous definition

1 For any n ≥ 0, d̂(B̂R(A)n) ⊂ B̂R(A)n+1.

Hence, we can view d̂ as a degree +1 endomorphism of B̂R(A).

2 The linear map d̂ is a square-zero differential on B̂R(A).

Proof.
1. Direct computation. 2. The terms either cancel out or can be grouped in DJac.
E.g. d̂

2
(ā)(b⊗ c) = −(m⊗ Id)DJac(a, b, c) + (Id⊗m)DJac(b, a, c)

⇝ completed double Poisson cohomology: d̂PH(A) = H(B̂R(A), d̂)

Also: analog for double Lie algebras, see §4.1.4
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Relating double Poisson cohomologies

Theorem

If J−,−K = µ2(P ) is a double Poisson bracket for some P ∈ (T ∗A)2, then

the maps (µn)n≥0 define a morphism of complexes (T∗A)♯ −→ B̂R(A)

endowed with the Pichereau-Van de Weyer differential dP and the ‘new’ d̂
Thus, we obtain a k-linear map dPH(A) → d̂PH(A) in cohomology.

0 (T∗A)♯,0 (T∗A)♯,1 (T∗A)♯,2 (T∗A)♯,3 · · ·
dP dP dP dP

0 B̂R(A)0 B̂R(A)1 B̂R(A)2 B̂R(A)3 · · ·d̂ −d̂ d̂ −d̂

µ0 µ1 µ2 µ3

Corollary

When all (µn)n≥0 are isomorphisms, dPH(A) and d̂PH(A) are isomorphic.
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Chemla’s formula

Proposition

Fix J−,−K ∈ B̂R(A)2 and {{−}} ∈ B̂R(A)n, n ≥ 1. Then, the

(n+ 1)-bracket d̂({{−}}) ∈ B̂R(A)n+1 satisfies

d̂({{−}})(a1 ⊗ . . .⊗ an+1)

=

n+1∑
i=1

(−1)ni σi {{ai+1, . . . , an+1, a1, . . . , ai−2, Jai−1, aiK}}L

+

n+1∑
i=1

(−1)ni σi−1 Jai, {{ai+1, . . . , an+1, a1, . . . , ai−1}} KL

Proof.

Direct calculation.

⇝ related to the construction of [Chemla,’20; 1712.05619] for the double
Lie-Rinehart algebra cohomology on Ω1

A with
ρ : Ω1

A → Der(A), ρ(d a) := Ja,−K, {{d a,d b}}Ω1
A

:= (d⊗ IdA +IdA ⊗ d ) Ja, bK



Operations on representation algebras (1)

We follow Chapter 7 of [F-Valeri,2509.21232]

S
(1)
k = {τ ∈ Sk | τ(1) = 1}; Recall {aij , bkl} = {{a, b}}′kj {{a, b}}′′il [VdB,’08]

Theorem

Given {{−}} ∈ B̂R(A)k, ∃! tr({{−}}) ∈ Xk(AN )GLN satisfying

tr({{−}})(a1u1v1 , . . . , a
k
ukvk

) =
∑

σ̃∈S(1)
k

sgn(σ̃)
{{
a1, aσ̃(2), . . . , aσ̃(k)

}}
σ̃(u,v)

for any aj ∈ A, 1 ≤ uj , vj ≤ N with 1 ≤ j ≤ k, and the notation

σ̃(u, v) := (uσ̃(k)v1, u1vσ̃(2), . . . , uσ̃(k−1)vσ̃(k)).

This defines a linear map tr : B̂R(A)k −→ Xk(AN )GLN whose restriction
to µk((T∗A)k) coincides with tr : (T∗A)♯ → Xk(AN )GLN .
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Operations on representation algebras (2)

Theorem

Assume that J−,−K ∈ B̂R(A)2 is a double Poisson bracket, and let
{−,−} = tr(J−,−K) denote the associated Poisson bracket on AN .
Then, there is a morphism of complexes

tr : (B̂R(A), d̂) −→ (X(AN ), (−1)• δAN ,{−,−}),

which descends to a linear map d̂PH(A) → HCE(AN ) in cohomology.
Furthermore, by GLN -invariance, this descends to a linear map
d̂PH(A) → HCE(AGLN

N ) in cohomology.

Proof.

Commutativity of

B̂R(A)k−1 B̂R(A)k

Xk−1(AN ) Xk(AN )

d̂

(−1)k−1 δk−1
tr tr



Operations on representation algebras (3)

Corollary

Assume that P ∈ (T∗A)♯,2 satisfies {P, P}SN = 0. Then, the following
diagrams are commutative:

dPH(A) d̂PH(A)

PH(AN ) HCE(AN )

µ

∼

tr tr

dPH(A) d̂PH(A)

PH(AGLN
n ) HCE(AGLN

N )

µ

∼

tr tr

where we use the differentials dP , d̂, dtr(P ) = [tr(P ),−]SN and δCE on the
top left, top right, bottom left and bottom right, respectively.

!! The vertical trace maps are, in general, neither injective nor surjective



Example 1

We follow Chapter 6 of [F-Valeri,2509.21232]

On k[x], (for λ, µ, ν ∈ k)

Jx, xK = ν(x2 ⊗ x− x⊗ x2) + µ(x2 ⊗ 1− 1⊗ x2) + λ(x⊗ 1− 1⊗ x)

It is Poisson iff λν − µ2 = 0 [Powell,’16].

All (µn) are iso, and J−,−K = µ2(P ) for

P = λx∂x∂x + µx2∂x∂x + ν x2∂xx∂x , ∂x ∈ Der(k[x]), x 7→ 1⊗ 1

We assume λν − µ2 = 0 from now on.
J−,−K is also a double Poisson bracket on any k[x]/(xr) (but no P !)
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Results on k[x] and k[x]/(xr)

Proposition

d̂PH
0
(k[x]) = k[x].

d̂PH
1
(k[x]) = k (νθ2 + 2µθ1 + λθ0), where θj ∈ Der(k[x]) x 7→ xj

dPH1(k[x]) = k
(
νx2∂x + 2µx∂x + λ∂x

)
d̂PH

2
(k[x]) = dPH2(k[x]) = {0} .

J−,−K is not differential on k[x]/(xr) ⇝ only d̂PH

Proposition

d̂PH
0
(k[x]/(xr)) = k[x]/(xr).

d̂PH
1
(k[x]/(xr)) = k θ2 if ν ̸= 0 and µ = λ = 0.

d̂PH
1
(k[x]/(xr)) = {0} in all other cases. (only possibility for r = 2)

d̂PH
2
(k[x]/(xr)) = k {{−,−}}2,0 if ν ̸= 0, µ = λ = 0.

d̂PH
2
(k[x]/(xr)) = {0} in all other cases. (only possibility for r = 2)
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Inducing the results

Recall k[x]N ≃ k[glN ], thus Spec((k[x]/(xr))N ) ≃ {Y ∈ glN | Y r = 0N}

E.g. for ν ̸= 0 and λ = µ = 0 (r > 2) we obtain:

From d̂PH
0
:
∑

k≥0 k tr(xk) ⊂ H0
CE(AN ) (invariants/spectrum)

⇝ d̂PH(A) → HCE(AN ) clearly not injective

From d̂PH
1
: k tr(θ2) where

tr(θ2) : xij 7→
∑

1≤r≤N

xirxrj

From d̂PH
2
in truncated case only: k tr({{−,−}}2,0) where

tr({{−,−}}2,0) : (xij , xpq) 7→
∑

1≤r≤N

(xprxrjδiq − δpjxirxrq)



Nondegenerate constant case (1)

Let ℓ ≥ 2. Put A = k⟨u1, . . . , uℓ⟩
Fix skewsymmetric C = (Cij) ∈ GLℓ(k)

Lemma

There is a unique double Poisson bracket J−,−K on A satisfying

Jui, ujK = Cij 1⊗ 1 , 1 ≤ i, j ≤ ℓ

Analogous to [De Sole-Kac-Valeri,’15; Thm. 2.18] :

Theorem

dim
(
d̂PH

n
(A)

)
= dim (dPHn(A)) = δn0 , n ≥ 0 .

Remark: induced Poisson bracket tr(J−,−K) is non-degenerate so
PHn(AN ) = δn0k ∀N and dPH(A) → PH(AN ) is an isomorphism.



Nondegenerate constant case (1)

Let ℓ ≥ 2. Put A = k⟨u1, . . . , uℓ⟩
Fix skewsymmetric C = (Cij) ∈ GLℓ(k)

Lemma

There is a unique double Poisson bracket J−,−K on A satisfying

Jui, ujK = Cij 1⊗ 1 , 1 ≤ i, j ≤ ℓ

Analogous to [De Sole-Kac-Valeri,’15; Thm. 2.18] :

Theorem

dim
(
d̂PH

n
(A)

)
= dim (dPHn(A)) = δn0 , n ≥ 0 .

Remark: induced Poisson bracket tr(J−,−K) is non-degenerate so
PHn(AN ) = δn0k ∀N and dPH(A) → PH(AN ) is an isomorphism.



Nondegenerate constant case (2)

Theorem

dim
(
d̂PH

n
(A)

)
= dim (dPHn(A)) = δn0 , n ≥ 0 .

Proof.

1. All µn are iso so d̂PH
n
(A) ≃ dPHn(A)

2. If f̄ ∈ A♯ s.t. d̂(f̄) = 0, then f̄ ∈ k (this gives d̂PH
0
)

⇝ this uses Euler vector field E : f 7→ deg(f) f

3. Extend E to LE : B̂R(A) → B̂R(A) invertible outside k ⊂ B̂R(A)0

Define contraction operator ιC : B̂R(A)• → B̂R(A)•−1 using C−1

Get homotopy operator hE,C = (LE)
−1 ◦ ιC :

⊕
n>0 B̂R(A)n → B̂R(A)

If {{−}} ∈ B̂R(A)n, n > 0, (d̂ ◦ hE,C − hE,C ◦ d̂)({{−}}) = (−1)n+1 {{−}}

4. If d̂({{−}}) = 0, it must be a coboundary!
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Plan for the talk

1 Motivation and classical constructions

2 NC Poisson geometry and a first cohomology theory

3 Completed double Poisson algebra cohomology

4 Final remarks



Double quasi-Poisson cohomology (1)

This follows Sections 5.2 and 7.3.2 of [F-Valeri,2509.21232]

Definition

J−,−K is a double quasi-Poisson bracket if the associated triple bracket
DJac satisfies for a fixed q ∈ k× and any a, b, c ∈ A

DJac(a, b, c) = q
(
ca⊗ b⊗ 1− ca⊗ 1⊗ b− c⊗ ab⊗ 1 + c⊗ a⊗ b

− a⊗ b⊗ c+ a⊗ 1⊗ bc+ 1⊗ ab⊗ c− 1⊗ a⊗ bc
)
.

Proposition

If J−,−K is a double quasi-Poisson bracket, then, the (degree +1)

operations d̂ : B̂R(A) → B̂R(A) given as in the Poisson case link define a

square-zero differential on the complex B̂R(A).

Proof.
One has to carefully replace all DJac = 0 from the Poisson case by the above equality

and cancel out terms.
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Double quasi-Poisson cohomology (2)

Assume that J−,−K ∈ B̂R(A)2 is a double quasi-Poisson bracket.
Recall tr : B̂R(A)k −→ Xk(AN )GLN , ∀ k

Proposition

The skewsymmetric biderivation tr(J−,−K) defined on AN is a
quasi-Poisson bracket in the sense of [Alekseev–Kosmann-Schwarzbach–Meinrenken,’02]

Following [AKSM,’02], we get quasi-Poisson cohomology by restricting to
GLN -invariant multivector fields: HCE;GLN

(AN ) := H(X(AN )GLN , δ)

Theorem

The differential d̂ on B̂R(A) (defined using J−,−K) and the CE differential
δ on Xk(AN )GLN (defined using tr(J−,−K)) induce

tr : (B̂RB(A), d̂) −→ (X(AN )GLN , (−1)• δ),

which descends to a linear map d̂PH(A) → HCE;GLN
(AN ) in cohomology.

Furthermore, this descends to a linear map d̂PH(A) → HCE(AGLN
N ).
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The gauge element

We follow Sections 5.1, 5.3 and 7.3 of [F-Valeri,2509.21232]

Construction from [Alekseev-Kawazumi-Kuno-Naef,’20] in the simplest case

Lemma (Van den Bergh,’08)

The gauge element ∆ ∈ Der(A), a 7→ a⊗ 1− 1⊗ a induces infinitesimal
vector fields of GLN ↷ AN under tr.

Proof.

∆ij(akl) = akjδil − δkjail = [X(a), Eji]kl

Corollary

Any Q = Q1 · · ·Qk−1δ ∈ (T∗A)k with Qj ∈ Der(A) is such that

tr(Q) ∈ Xk(AN ) vanishes on AGLN
N .

Proof.

Invariant elements are sent to zero under the infinitesimal action.
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Gauged double Poisson (1)

We introduce (k ≥ 1) ι∆k : (T∗A)k−1 → (T∗A)♯,k, α 7→ (α∆)♯

By the corollary, tr ◦ι∆k (α) is the zero multivector on AGLN
N

Let Dk
A := coker ι∆k with projection π∆

k : (T∗A)♯,k → Dk
A.

For k = 0, ι∆0 : 0 → A♯ and π∆
0 = IdA♯

.

If P ∈ (T∗A)♯,2 is Poisson, dP restricts to DA

⇝ gauged double Poisson cohomology gdPH(A) = H(DA,dP )
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Gauged double Poisson (2)

If J−,−K = µ2(P ) is a differential double Poisson bracket:

d̂ restricts to D̂k
A := cokerµk ◦ ι∆k

0 (T∗A)♯,0 (T∗A)♯,1 (T∗A)♯,2 (T∗A)♯,3 · · ·

0 B̂R(A)0 B̂R(A)1 B̂R(A)2 B̂R(A)3 · · ·

0 D0
A D1

A D2
A D3

A · · ·

0 D̂0
A D̂1

A D̂2
A D̂3

A · · ·

0 (T∗A)0 (T∗A)1 (T∗A)2

ι∆0 ι∆1 ι∆2 ι∆3

⇝ completed gauged double Poisson cohomology ĝdPH(A) = H(D̂A, d̂)



Gauged double Poisson (3)

If J−,−K = µ2(P ) is a differential double Poisson bracket:

Theorem

The following diagram is commutative:

dPH(A) d̂PH(A)

PH(AN ) HCE(AN )

gdPH(A) ĝdPH(A)

PH(AGLN
N ) HCE(AGLN

N )



Gauged double Poisson (4)

Example

For any one of the (nonzero) double Poisson bracket defined on k[x], each
map dP : Dk

k[x] → Dk+1
k[x] is the zero map.

One can deduce that gdPHk(k[x]) = Dk
k[x] for all k ≥ 0, and

1 gdPH0(k[x]) = (T∗k[x])0,♯ = k[x];
2 gdPH1(k[x]) = (T∗k[x])1,♯ = ⊕j≥0 k(xj∂x)♯;
3 gdPH2ℓ(k[x]) = 0 and gdPH2ℓ+1(k[x]) = ⊕j≥0k(xj∂2ℓ+1

x )∆ for ℓ ≥ 1.



Gauged double Poisson (5)

Definition

P ∈ (T∗A)♯,2 is gauged Poisson if there exists α ∈ (T∗A)2 such that
{P, P}SN = (∆α)♯ ∈ (T∗A)♯,3. The corresponding double bracket
J−,−K = µ2(P ) is then said to be a double gauged Poisson bracket.

Proposition

Assume that P ∈ (T∗A)♯,2 is a gauged Poisson element. Then the linear
operation (of degree +1) dP on (T∗A)♯ descends to a square-zero
differential on DA.

Proof.

One computes Im(d2P ) ⊆ Im(ι∆). Then, recall Dk
A := coker ι∆k
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Gauged double Poisson (6)

Proposition

If P ∈ (T∗A)♯,2 is gauged Poisson, then tr(P ) ∈ X2(AN )GLN induces a

Poisson bivector on AGLN
N .

Proof.

{P, P}SN = (∆α)♯ implies [tr(P ), tr(P )]SN =
∑

i,j(Eji)AN
∧ αji.

Theorem

There is a morphism of complexes

tr : (DA,dP ) −→ (X(AGLN
N ), dtr(P )),

which descends to a linear map gdPH(A) → PH(AGLN
N ) in cohomology.



To go further: dPVA cohomology

In part 2 of arXiv:2509.21232 with Daniele Valeri (La Sapienza, IT),
we give cohomological constructions for double Poisson vertex algebras

In part 3, we show that the dPA and dPVA cohomologies are related under
the jet and quotient functors (see [Bozec-F-Moreau,’25]).

It is time to make calculations for those theories...

https://arxiv.org/abs/2509.21232


Thank you for listening !

Maxime Fairon
maxime.fairon@u-bourgogne.fr • maxime.fairon@ube.fr

mfairon.perso.math.cnrs.fr/

https://mfairon.perso.math.cnrs.fr/
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