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Based on arXiv:2509.21232 with Daniele Valeri (La Sapienza, IT)


https://arxiv.org/abs/2509.21232

Classical Poisson cohomology (1)

Fix a commutative associative k-algebra A

Recall (A,{—,—}) is a Poisson algebra if {—, —}: A® A — A linear s.t.
(skewsymmetry) {z,y} = —{y,z}
(Leibniz rules) {z,yz} = yl{a, 2z} + {z,y}z, {ay,z}=a{y,z} +{z, 2}y
(Jacobi identity) {x,{y,z}} — {v,{z,z}} = {{z, y}, 2}



Classical Poisson cohomology (1)

Fix a commutative associative k-algebra A

Recall (A,{—,—}) is a Poisson algebra if {—, —}: A® A — A linear s.t.
(skewsymmetry) {z,y} = —{y,z}
(Leibniz rules) {z,yz} = yl{a, 2z} + {z,y}z, {ay,z}=a{y,z} +{z, 2}y
(Jacobi identity) {x,{y,z}} — {v,{z,z}} = {{z, y}, 2}

X"(A) C Hom(A™A, A) spanned by elements P s.t.
P(ab,ag,...,a,) = aP(b,as,...,a,) +bP(a,as,...,a,).

§Ge(P) (@1, ar1) = Y (=) {mi, P(z1,.7., 2n11)}
1<i<n41

L iJ
+ Z (—1)1+JP({$Z',$J'},JJ1,.T.,.f.,l‘nJrl).

1<i<j<n+1

From CE differential ~ Hgg(A) := H(X(A),dcE).



Classical Poisson cohomology (2)

Schouten-Nijenhuis bracket [—, —]sy on X*(A4) (P € Xk(A), Q € X(4))

[P7 Q]SN((M, e akJrlil)
:(_1)(’6—1)(1*1) Z Sgn(U)P(Q(aa(l),...,aa(l)),aa(lH),...,ao<k+l71))

oc€S| k-1

— > sgn(0)Q(P(as(1)s -+ s Go (k) Qo(ki1)s - - - > Bo(kti—1)) »

oESK,1-1

~ (X(A),[—, —]sn) is a graded Lie algebra of degree —1, in particular
[z, [y, ZJsnJsn — (=D)I=DWID [y 2, 2]sn]sn = ([, y]sn, 2lsn



Classical Poisson cohomology (2)

Schouten-Nijenhuis bracket [—, —]sy on X*(A4) (P € Xk(A), Q € X(4))

[P7 Q]SN((M, e akJrlil)
:(_1)(’6—1)(1*1) Z Sgn(U)P(Q(aa(l),...,aa(l)),aa(lH),...,ao<k+l71))

oc€S| k-1

— > sgn(0)Q(P(as(1)s -+ s Go (k) Qo(ki1)s - - - > Bo(kti—1)) »

oESK,1-1

~ (X(A),[—, —]sn) is a graded Lie algebra of degree —1, in particular
[z, [y, ZJsnJsn — (=D)I=DWID [y 2, 2]sn]sn = ([, y]sn, 2lsn

[ dm = [Ha _]SN7 ITe x2(A) s.t. [H’ H]SN =0 ]

~ PH(A) := H(X(A), dn)

For {—,—}m:Ax A— A, {a,b}y :=1l(a,b), get diy = écE
~ Heop(A) ~ PH(A)



Kontsevich-Rosenberg principle

Field k char. 0, k = k

Following [Kontsevich, '93] and [Kontsevich-Rosenberg, '99] (N S NX)

associative k-algebra —  commutative k-algebra
A — An :=k[Rep(A, N)]

Ap is generated by symbols a;;, Va € A, 1 <i,j < N.
Rules : 1;; = d;5, (a +b)ij = aij + bij, (ab)ij = > aiby;.

Goal: Find a property P,. on A that gives the usual property P
on Ay for all N € N~




Kontsevich-Rosenberg principle

Field k char. 0, k = k

Following [Kontsevich, '93] and [Kontsevich-Rosenberg, '99] (N S NX)

associative k-algebra —  commutative k-algebra
A — An :=k[Rep(A, N)]

Ap is generated by symbols a;;, Va € A, 1 <i,j < N.
Rules : 1;; = d;5, (a +b)ij = aij + bij, (ab)ij = > aiby;.

Goal: Find a property P,. on A that gives the usual property P
on Ay for all N € N~

Question: Can we induce a Poisson bracket and its Poisson cohomology?
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Double (Poisson) brackets

A is a unital associative fin. gen. algebra over k, ® := ®

Definition ([Van den Bergh,’OS])
A double bracket is a k-linear map {—, -} : A® A — A® As.t.

O {a, b} = —T(12) {b,a} (cyclic skewsymmetry)
O {a,bc} =0bx1){a,c}+ {a, b} (1®c) (outer derivation)
(3] {ad, b} = (1 X a) {{d, b]} + {{a, b} (d (%) 1) (inner derivation)

A double bracket is Poisson if “double Jacobiator” DJac : A®3 — A®3,

DJ&C(G, b, C) = {{CL, {ba C}}L + T(123) {ba {Ca a}}L + T(132) {C) {aa b}}}L
is identically zero.

v

In the def, we use fa, X' ® X"}, = {a, X'} @ X"

More generally, B-linear version that | will omit



DPA : examples

Key property: enough to define {—, —} on generators

Example

Take k[z] (or any quotient k[z]/(z")).
{z,z}=201-1®«z

Example

Take k(z, y)
{xay}}: 1®1, {l’,l‘}}zo, {y’y}}:()




Relation to the Kontsevich-Rosenberg principle

Ap generated by symbols a;j, Va € A, 1 <14,j < N.
Rules : 12'47‘ = (Sijv ((1, + b)’i,j = aij + bijv ((J,b)l‘j = Zk (I/ik;bkj.
Theorem (Van den Bergh,'08)

If A has a double bracket {—,—}, then for any N > 1
An :=k[Rep(A, N)| has an antisymmetric biderivation {—, —} defined by
{aij, b} = {a, b}, fa, 0}y -

If {—,—} is Poisson, then {—, —} is a Poisson bracket.

Proof.

Jac(asj, by, cuw) = DJac(a, b, €)yj.it e — DJac(a, ¢, b)k; iv.ul O




Relation to the Kontsevich-Rosenberg principle

Ap generated by symbols a;j, Va € A, 1 <14,j < N.

Rules : 1'ij = (Szjv ((1, + b)’i,j = aij + bijv ((J,b)l‘j = Zk ai}{;bkj.

Theorem (Van den Bergh,'08)

If A has a double bracket {—,—}, then for any N > 1

An :=k[Rep(A, N)| has an antisymmetric biderivation {—, —} defined by
{aij, b} = {a, b}, fa, 0}y -

If {—,—} is Poisson, then {—, —} is a Poisson bracket.

Proof.
Jac(asj, by, cuw) = DJac(a, b, €)yj.it e — DJac(a, ¢, b)k; iv.ul O

= Set tr(c) := >, ¢jj. Then {tr(a), tr(b)} = tr(mo {a,b}) defines a
Poisson bracket on the invariant subalgebra .A%LN.



DPA : examples and representations

Example

Take k[z] (or any quotient k[z]/(x"))
{r,z} =2z21-1®x

Induces PB of gly ~ k[Rep(k|[z], N)] (or nilpotent matrices of order )
Example

Take k(z,y)

{z,y} =121, {z,2} =0, {y,y} =0

Induces PB of T*gly ~ k[Rep(k(z,y), N)]

~> Second example extends to any path algebra of quiver !



multibrackets and NC forms

A n-bracket on A is a linear map {—,...,—} : A®" — A®" such that
(cyclic skewsymmetry) + (Leibniz rule), i.e.

{[ala az, ... 7an}: (_1)7171 {{CLQ, ey Ay, a1}07
{{01, ey Qp—1, bc}}: b{{al, ey Qp—1, C}} + {{al, e, Qp—1, b}} C.
BR(A),, = span,{all n-brackets}, BR(A) := &,>1 BR(A),

Completed in degree O : Eﬁ(A) = ﬁ%nzogﬁ(fl)n with
BR(A)o = A; := A/[A, A] and BR(A),, = BR(A),



multibrackets and NC forms

A n-bracket on A is a linear map {—,...,—} : A®" — A®" such that
(cyclic skewsymmetry) + (Leibniz rule), i.e.

far, a2, ... an}= (=1)""" fag, ..., an,a1}",

{{01, ey Qp—1, bc}}— b{{al, ey Qp—1, C}} + {{al, e, Qp—1, b}} C.
BR(A),, = span,{all n-brackets}, BR(A) := &,>1 BR(A),
Completed in degree 0 : Eﬁ(A) = (qb,nzogﬁ(fl)n with
BR(A)o = A; := A/[A, A] and BR(A),, = BR(A),

A-bimodule of double derivations
Der(A) := {D € Homy (A, A®?) | D(ab) = a D(b) + D(a) b}

Noncommutative multivector fields: T*A := T 4yDer(.A)



Differential DPA

Proposition (Van den Bergh,'08)
For n > 1, there is a well-defined map ., : (T*A),, — Eﬁ(fl)n
wn(Q) i={—, ..., —}}Q = Zogign—1<_1)(n_1)i‘7i of—,..., —}5 oo™t

obtained k-linearly from (a; € A and §; € Der(A))
far,. . an}s 5 = On(an)'d1(a1)” ® 61(a1)'d2(az)” ® -+ @ Gn-1(an—1)'0n(an)”

Moreover, i, factors through (T*A)s ., i.e. un(Q) only depends on Q
modulo graded commutators.

Under some assumptions, all yu,, are isomorphisms [Van den Bergh,'08]



Differential DPA

Proposition (Van den Bergh,'08)
For n > 1, there is a well-defined map ., : (T*A),, — Eﬁ(fl)n
wn(Q) i={—, ..., —}}Q = Zogign—l(_l)(n_l)iai of—,..., —}5 oot

obtained k-linearly from (a; € A and §; € Der(A))
far,. . an}s 5 = On(an)'d1(a1)” ® 61(a1)'d2(az)” ® -+ @ Gn-1(an—1)'0n(an)”

Moreover, i, factors through (T*A)s ., i.e. un(Q) only depends on Q
modulo graded commutators.

Under some assumptions, all yu,, are isomorphisms [Van den Bergh,'08]

A double bracket {—, —} is differential if {—, —} = pa(P), P € (T*A),

Example
{z,2} = r®1—1®x is differential on k[z], but not on k[z]/(z*), k > 2.J




What we are going to see...

Recall for the standard case:
e Hop(A) =H(X(A),dck) defined from {—, —}
e PH(A) = H(X(A),dn = [II, —]sn) defined from bivector II
@ One has Hop(A) ~ PH(A)

At the NC level:

o dPH(A) defined on BR(.A) from a double Poisson bracket
(this is the new approach of [F.-Valeri,2509.21232])

e dPH(A) defined on (T*A)y, dp = {P, —}sn
(approach of [Pichereau-Van de Weyer,’08; math/0701837])

e (itn)n induce a linear map dPH(A) — d?i—l(A)
if the double Poisson bracket is o (P)

J

See also [Chemla,’20; 1712.05619] for double Lie-Rinehart algebra cohomologies

and [Zheng-Tan, private comm.] for a version of {—, —}sn on ]§§(.A)



NC analogue of SN bracket

Theorem (Van den Bergh,'08)

There is a unique graded double Poisson bracket {—, —}y of degree —1
on T* A determined by (a,b € A and 6, A € Der(A))

{aa bH’SN = 07 {57 a}SN = 5(0‘) I
6, Aboy = 723) ((5 ®Tda) o A — (Idg ®A) o 5)

+ T(2) ((IdA ®5) oA — (A®Id4)o 5) .

~ (T*A)y inherits a graded Lie bracket {—, —}sn :=mo {—, —}qn-




NC analogue of SN bracket

Theorem (Van den Bergh,'08)

There is a unique graded double Poisson bracket {—, —}y of degree —1
on T* A determined by (a,b € A and 6, A € Der(A))
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A differential double bracket ji5(P) is Poisson iff {P, P}sx = 0 in (T*A)y



NC analogue of SN bracket

Theorem (Van den Bergh,'08)

There is a unique graded double Poisson bracket {—, —}y of degree —1
on T* A determined by (a,b € A and 6, A € Der(A))

{aa bH’SN = 07 {57 aB’SN = 5(0‘) I
6, Aboy = 723) ((5 ®Tda) o A — (Idg ®A) o 5)

+ T(2) ((IdA ®5) oA — (A®Id4)o 5) .

~ (T*A)y inherits a graded Lie bracket {—, —}sn :=mo {—, —}qn-

A differential double bracket ji5(P) is Poisson iff {P, P}sx = 0 in (T*A)y
~» dp:={P, —}sN is a square-zero differential on (T*A)y if {P, P}snx=0

~» Double Poisson cohomology: dPH(A) = H((T*A)y,dp)
[Van de Weyer,’08], [Pichereau-Van de Weyer,'08]



From dPA cohomology to PA cohomology

~» dp:={P,—}gn is a square-zero differential on (T*A) if {P, P}sn=0
~+ Double Poisson cohomology: dPH(A) = H((T*A);,dp)

Theorem (Pichereau-Van de Weyer,'08)

If P e (T*A)yo satisfies { P, P}sx = 0, there is a morphism of complexes
tr: ((T*A)ﬁrdp) — (%(AN)vdtr(P))l Q — tI‘(Q),

which descends to a linear map dPH(A) — PH(Ap) in cohomology.

Furthermore, by GLy-invariance, get a linear map dPH(A) — PH(ASn).

0> (T*A)yo —— (T*A)y1 ——— (T*A)y o —— (T*A)y3 — -+
(1]7 (]-P (1p

tr tr tr tr

dtr P dt]‘ P d‘rr P)
0— ASL,, %) xl(.An)GL“ ﬁ() %2(AH)GL,, ﬁ( }:3(AH)GL“ N

dir(p) dir(p) dir(p)
—

0 —> AGL» R (AGhn) —— X2(AGEn) —— B3 (AG) - -



What else?

In [Van de Weyer,'08], [Pichereau-Van de Weyer,'08], computation of several
cohomology groups.

BUT
@ calculations are tedious;

@ there is no cohomology theory if the double Poisson bracket is not
differential!

@ one misses a “Chevalley-Eilenberg” version of this construction.



Plan for the talk

© Motivation and classical constructions
@ NC Poisson geometry and a first cohomology theory
© Completed double Poisson algebra cohomology

Q Final remarks



The differential

We follow Chapter 4 of [F-Valeri,2509.21232]

Recall: BR(A) = @nzoﬁf\{(/l)n with
BR(A)y = A := A/[A, A] and BR(A),, = span,{all n-brackets}

We denote the double Poisson bracket as [—, —|

Definition

d:BR(A) — Dn>0 Homy (AS(H1) | AS(+1)) is defined in deg 0 by
d@): A= A, d@):=-mofa,—], (a€Aisaliftofae A

and in degree n. > 1 by ({—} € BR(A),)

d-P = > (1m0 o ({-}@Ida) o WG "V &[-, ~]) oo

S€ELn+1

+(=)" > ()™t o (- -] @15 ) o (lda® -~} oo™*

SE€Lm+1

— = = = = N2 Nouel



The cohomology

Recall that we work over k, although everything works over B — A

Theorem

Consider the operation d from the previous definition

© Foranyn >0, d(BR(A)x) C BR(A)np1.
Hence, we can view d as a degree +1 endomorphism of BR(A).

@ The linear map disa square-zero differential on BR(A).




The cohomology

Recall that we work over k, although everything works over B — A

Theorem

Consider the operation d from the previous definition

© Foranyn >0, d(BR(A)x) C BR(A)np1.
Hence, we can view d as a degree +1 endomorphism of BR(A).

@ The linear map disa square-zero differential on BR(A).

Proof.

1. Direct computation. 2. The terms either cancel out or can be grouped in DJac.
Eg 4 (a)(b® ¢) = —(m®1d)DJac(a, b, ¢) + (Id ® m)DJac(b, a, ) O




The cohomology

Recall that we work over k, although everything works over B — A

Theorem

Consider the operation d from the previous definition

© Foranyn >0, d(BR(A)x) C BR(A)np1.
Hence, we can view d as a degree +1 endomorphism of BR(A).

@ The linear map disa square-zero differential on BR(A).

Proof.
1. Direct computation. 2. The terms either cancel out or can be grouped in DJac.
Eg 4 (a)(b® ¢) = —(m®1d)DJac(a, b, ¢) + (Id ® m)DJac(b, a, ) O

~ completed double Poisson cohomology: d/P\H(.A) = H(BR(A),d)
Also: analog for double Lie algebras, see §4.1.4



Relating double Poisson cohomologies

Theorem

If [—, =] = u2(P) is a double Poisson bracket for some P € (T*A)s, then
the maps (jn)n>0 define a morphism of complexes (T*A); — BR(A)
endowed with the Pichereau-Van de Weyer differential dp and the ‘new’ d
Thus, we obtain a k-linear map dAPH(A) — d/ﬁ-I(A) in cohomology.

d d
0= (T* A — (T A)g1 —— (T*A)2 —— (T*A)gs —— -+

MOJ Mll M2J N3J
o~ a\ ~ _

— — — — d —
0 — BR(A)g — BR(A); — BR(A); — > BR(A)s — -~



Relating double Poisson cohomologies

Theorem

If [—, =] = u2(P) is a double Poisson bracket for some P € (T*A)s, then
the maps (jn)n>0 define a morphism of complexes (T*A); — BR(A)
endowed with the Pichereau-Van de Weyer differential dp and the ‘new’ d
Thus, we obtain a k-linear map dAPH(A) — d/ﬁ-I(A) in cohomology.

d d d d
0= (T* Ao — (T*A)g1 —— (T*A)yo —> (T*A)yg —

MOJ Mll le N3J
o~ a\ ~ _

— — — — d —
0 — BR(A)g — BR(A); — BR(A); — > BR(A)s — -~

Corollary

When all (pin,)n>0 are isomorphisms, dPH(.A) and d?i—l(A) are isomorphic.

|




Chemla’s formula

Proposition

Fix [—,—] € BR(A)z and {—} € BR(A),n, n > 1. Then, the
(n 4+ 1)-bracket d({—}) € BR(.A),,41 satisfies
df-P(a ®...® ans1)

n+1 o
= Z(—l)nl 0‘1 {aprl, ceeyQn41,01,...,0;—2, [[aifl,ai]]}}L
=1

n+1
+3 (=1 0" [os, {@ie1,- -, ams,ar, a1 Bl
1=1

Proof.

Direct calculation. O

~ related to the construction of [Chemla,'20; 1712.05619] for the double
Lie-Rinehart algebra cohomology on Q}4 with
p: Q4 = Der(A), p(da):= [a,—], {da,db}}Q}4 = (d®1Ida+1da®d) [a,b]



Operations on representation algebras (1)

We follow Chapter 7 of [F-Valeri,2509.21232]

Slgl) = {T € Sy ‘ T(l) = 1}; Recall {aij,bkl} = {{a, b};c] {CL, b};,l [VdB,'08]



Operations on representation algebras (1)

We follow Chapter 7 of [F-Valeri,2509.21232]

S](cl) = {T € Sy ‘ T(l) = 1}; Recall {aij,bkl} = {CL, b};c] {{CL, b};,l [VdB,'08]

Theorem
Given {—} € BR(A)g, 3! tr({—1}) € X¥(An)CLN satisfying

(=1 (@l 0p - h0) = Y sgn(5) {{al; a”®,...,a”® }}&@ v)

sesM 7

for any ' € A, 1 <wuj,v; < N with 1 < j <k, and the notation
0 (u,v) := (Ug(k)V1, U1V5(2), - - - » U (k—1) Vo (k))-

This defines a linear map tr : Eﬁ(A) r — XF(AN)SEN whose restriction

to i ((T*A)g) coincides with tr : (T*A)y — X*(An )9V,




Operations on representation algebras (2)

Theorem

Assume that [—, —] € Eﬁ(A)g is a double Poisson bracket, and let
{—,—} =tr([—,—]) denote the associated Poisson bracket on Ay.
Then, there is a morphism of complexes

tr: (BR(A),d) — (X(AN), (=1)* 6 4y,(——});

which descends to a linear map cﬁ’T—I(A) — Hep(An) in cohomology.
F/u\rthermore, by GL y-invariance, this descends to a linear map
dPH(A) — Hop(ASY) in cohomology.

Proof.

BR(A),_1 ——— BR(A)s

Commutativity of d
tr tr

(_l)kfl 5k71
X (Ay) ———— X7 (AN)

= = — — ——



Operations on representation algebras (3)

Corollary

Assume that P € (T*A)y 5 satisfies { P, P}sx = 0. Then, the following
diagrams are commutative:

dPH(A) — dPH(A) dPH(A) ——— dPH(A)
trl ltr trl ltr
PH(Ay) ——— Hep(An) PH(ASM™W) —=— Hop(ASY)

where we use the differentials dp, d, dey(py = [tr(P), —]sn and dcg on the
top left, top right, bottom left and bottom right, respectively.

o

Il The vertical trace maps are, in general, neither injective nor surjective



We follow Chapter 6 of [F-Valeri,2509.21232]

On k[z], (for A\, pu, v € k)

[ [z,2] =v(z?’®@2z - 2022+ u@*’®1-1022) + AM(z®1-1Q )

It is Poisson iff \v — ,u2 = 0 [Powell,'16].

All (uy,) are iso, and [—, —] = ua(P) for

[ P = \20,0; + p220,0; + v 220,20, , 0O, € Der(k[z]), 2 — 1®1




We follow Chapter 6 of [F-Valeri,2509.21232]

On k[z], (for A\, pu, v € k)

[ [z,2] =v(z?’®@2z - 2022+ u@*’®1-1022) + AM(z®1-1Q )

It is Poisson iff \v — ,u2 = 0 [Powell,'16].

All (uy,) are iso, and [—, —] = ua(P) for

[ P = \20,0; + p220,0; + v 220,20, , 0O, € Der(k[z]), 2 — 1®1

We assume \v — u? = 0 from now on.
[—,—] is also a double Poisson bracket on any k[x|/(z") (but no P!)



Proposition

Results on k[z] and k[z]|/(z")

(V02 + 2ub1 + Mo), where 0; € Der(k[z]) =+ 27
(v2® 0y + 21205 + N0z)

dPH?(k[z]) = {0} .




Results on k[z] and k[z]|/(z")

Proposition
o dPH’ (k[z]) = klz]
o dPH (k[z]) = k (182 + 2161 + Ado), where 0; € Der(kz]) = s o’
dPH" (k[z]) = k (v2®0s + 2u20: + A0z
o dPH’(k[z]) = dPH2(k[z]) = {0} .

[—,—] is not differential on k[z]/(z") ~~ only dPH

Proposition

(") =k
(z") =k ifv#0and u =X =0.

(z")) = {0} in all other cases. (only possibility forr = 2)
(") =k{— -}y ifv#0, p=A=0.

(z")) = {0} in all other cases. (only possibility for r = 2)




Inducing the results

Recall k[z]n ~ k[gly], thus Spec((k[z]/(z"))n) =~ {Y € gly | Y = 0n}
E.g. forv#0and A\ =p =0 (r > 2) we obtain:
o From dPH : Zkzoktr(xk) C HY p(AnN) (invariants/spectrum)

~ (ﬁI(A) — Hep(Apn) clearly not injective

1
e From dPH : ktr(f2) where

tl"(gg) DX Z Ly Ly

1<r<N

—2
e From dPH in truncated case only: ktr({—, —},,) where

tr({—, _}}2,0) : (xij7qu) = Z (xprwrjéiq - 5pjxirxrq)
1<r<N



Nondegenerate constant case (1)

Let ¢/ > 2. Put A= k(ul,...,w>
Fix skewsymmetric C' = (Cy;) € GLy(k)

Lemma

There is a unique double Poisson bracket [—, —] on A satisfying

[[ui,uj]]:C’ij1®1, 1<i4,5 <4




Nondegenerate constant case (1)

Let £ > 2. Put A= k<u1,...,w>
Fix skewsymmetric C' = (Cy;) € GLy(k)

Lemma
There is a unique double Poisson bracket [—, —] on A satisfying

[[ui,uj]]:C’ij1®1, 1<i4,5 <4

Analogous to [De Sole-Kac-Valeri,'15; Thm. 2.18] :
Theorem
dim (@T{”(A)) = dim (dPH"(A)) = dno, n>0. J

Remark: induced Poisson bracket tr([—, —]) is non-degenerate so
PH"(An) = 60k VN and dPH(A) — PH(Ay) is an isomorphism.



Nondegenerate constant case (2)

Theorem

dim (dPH"(A)) = dim (APH"(A)) = po, n > 0.

Proof.
1. All p, are iso so (ﬁln(A) ~ dPH"(A)

2.1f f € Ay s.t. d(f) =0, then J € k (this gives dPT')
~- this uses Euler vector field E : f — deg(f) f




Nondegenerate constant case (2)

Theorem

dim (dPH"(A)) = dim (APH"(A)) = po, n > 0.

Proof.

1. All p, are iso so (ﬁln(A) ~ dPH"(A)

2.1f f € Ay s.t. d(f) =0, then J € k (this gives dPT')

~- this uses Euler vector field E : f — deg(f) f

3. Extend E to Lg : BR(A) — BR(A) invertible outside k © BR(A)

Define contraction operator (¢ : EE(A). — Eﬁ(.A)._l using C~1
Get homotopy operator hg,c = (Lg) ' ouc : @,,50 BR(A), — BR(A)




Nondegenerate constant case (2)

Theorem

dim (dPH"(A)) = dim (APH"(A)) = po, n > 0.

Proof.

1. All p, are iso so (ﬁln(A) ~ dPH"(A)

2.1f f € Ay s.t. d(f) =0, then J € k (this gives dPT')

~- this uses Euler vector field E : f — deg(f) f

3. Extend E to Lg : BR(A) — BR(A) invertible outside k © BR(A)

Define contraction operator (¢ : EE(A). — Eﬁ(A)._l using C~1

Get homotopy operator hg,c = (Lg) ' ouc : @,,50 BR(A), — BR(A)

If {—} € BR(A)p, n>0, (dohge —hpcod)({—}) = ()" {-}

4. 1f H({{—}}) = 0, it must be a coboundary! O

v




Plan for the talk

© Motivation and classical constructions
@ NC Poisson geometry and a first cohomology theory
© Completed double Poisson algebra cohomology

Q Final remarks



Double quasi-Poisson cohomology (1)

This follows Sections 5.2 and 7.3.2 of [F-Valeri,2509.21232]
Definition

[—, —] is a double quasi-Poisson bracket if the associated triple bracket
DJac satisfies for a fixed ¢ € k and any a,b,c € A

]D)Jac(a,b,c):q(ca®b®1—ca®1®b—c®ab®1+c®a®b

—a®b®c+a®1®bc+1®ab®c—1®a®bc).




Double quasi-Poisson cohomology (1)

This follows Sections 5.2 and 7.3.2 of [F-Valeri,2509.21232]

Definition

[—, —] is a double quasi-Poisson bracket if the associated triple bracket
DJac satisfies for a fixed ¢ € k and any a,b,c € A

]D)Jac(a,b,c):q(ca®b®1—ca®1®b—c®ab®1+c®a®b

—a®b®c+a®1®bc+1®ab®c—1®a®bc).

Proposition

If [—, —] is a double quasi-Poisson bracket, then, the (degree +1)
operations d : BR(A) — BR(.A) given as in the Poisson case define a
square-zero differential on the complex BR(A).

Proof.

One has to carefully replace all DJac = 0 from the Poisson case by the above equality

and cancel out terms. DJ
- L= = TR




Double quasi-Poisson cohomology (2)

Assume that [—, —] € Eﬁ(A)Q is a double quasi-Poisson bracket.
Recall tr : BR(A), — X*(An)SEN, VE

Proposition

The skewsymmetric biderivation tr([—, —]) defined on Ay is a
9y
quasi-Poisson bracket in the sense of [Alekseev—Kosmann-Schwarzbach-Meinrenken,’02]




Double quasi-Poisson cohomology (2)

Assume that [—, —] € Eﬁ(A)g is a double quasi-Poisson bracket.
Recall tr : BR(A), — X*(An)SEN, VE
Proposition

The skewsymmetric biderivation tr([—, —]) defined on Ay is a
9y
quasi-Poisson bracket in the sense of [Alekseev—Kosmann-Schwarzbach-Meinrenken,’02]

Following [AKSM,02], we get quasi-Poisson cohomology by restricting to
GLy-invariant multivector fields: Hop.gLy (An) = H(X(Ay)%V, §)

Theorem

The differential d on EI\{(A) (defined using [—, —]) and the CE differential
§ on XF(AN)CIN (defined using tr([—, —])) induce

tr: (BRp(A),d) — (X(An)EN, (=1)*6),

which descends to a linear map d/P\H(A) — Heg.ary (An) in cohomology.
Furthermore, this descends to a linear map dPH(A) — HCE(A]C\;[LN ).




The gauge element

We follow Sections 5.1, 5.3 and 7.3 of [F-Valeri,2509.21232]

Construction from [Alekseev-Kawazumi-Kuno-Naef,’20] in the simplest case

Lemma (Van den Bergh,'08)

The gauge element A € Der(A), a — a® 1 — 1 ® a induces infinitesimal
vector fields of GLxy ~ Ay under tr.

Proof.
Aij(ar) = arjoq — dkjaq = [X(a), Ejil O




The gauge element

We follow Sections 5.1, 5.3 and 7.3 of [F-Valeri,2509.21232]

Construction from [Alekseev-Kawazumi-Kuno-Naef,’20] in the simplest case

Lemma (Van den Bergh,'08)

The gauge element A € Der(A), a — a® 1 — 1 ® a induces infinitesimal
vector fields of GLxy ~ Ay under tr.

Proof.
Agj(agy) = ag;oy — djay = [X(a), Ejilw O

Corollary

Any Q = Q1 Qi—16 € (T*A), with Q; € Der(A) is such that
tr(Q) € X¥(Ay) vanishes on A%LN.

Proof.

Invariant elements are sent to zero under the infinitesimal action. OJ

= = = = = S K}




Gauged double Poisson (1)

We introduce (k > 1) £ : (T*A)g—1 — (T*A)pr, ar (aA)y

@ By the corollary, tro.£ () is the zero multivector on A%LN

Let D% := coker 2 with projection 72 : (T*A)yx — D%.
For k=0, 15 : 0 — Ay and 75" = Ida,.



Gauged double Poisson (1)

We introduce (k > 1) £ : (T*A)g—1 — (T*A)pr, ar (aA)y

@ By the corollary, tro.£ () is the zero multivector on A%LN

Let D% := coker 2 with projection 72 : (T*A)yx — D%.
For k=0, 15 : 0 — Ay and 75" = Ida,.

o If P e (T*A)y is Poisson, dp restricts to D 4

~ gauged double Poisson cohomology gdPH(A) = H(D 4,dp)



Gauged double Poisson (2)

If [—, —] = u2(P) is a differential double Poisson bracket:

d restricts to 233 := coker py, o LkA

(T* Ao (T*A) (T* A)2
O—>(T*Auo% A — (T" A2 —— (T"A)y3 ——>
-~ e
0—> D,OA J/ DA J/ D?A J/ Di\ J/
0 — BR(A)o|— BR(A); BR(A): BR(A)s —
| D S e
0 —> DY DY D% D%



Gauged double Poisson (3)

If [—, —] = u2(P) is a differential double Poisson bracket:

Theorem
The following diagram is commutative:




Gauged double Poisson (4)

Example
For any one of the (nonzero) double Poisson bracket defined on k], each
map dp : Dﬂlz[m} — Dﬂ’:[;]l is the zero map.
One can deduce that gdPH"(k[z]) = Df,, for all k > 0, and
© gdPH'(k[z]) = (T*k[z])o4 = klz];
@ gdPH' (k[z]) = (T*k[z])14 = ®;j>0 k(27 0, )y;
© gdPH*(k[z]) = 0 and gdPH*(k[z]) = @j50k(2792+1)a for £> 1.

o




Gauged double Poisson (5)

Definition
P e (T*A)y 2 is gauged Poisson if there exists o € (T*A) such that

{P,P}sn = (Aa); € (T*A)y,3. The corresponding double bracket
[—,—] = p2(P) is then said to be a double gauged Poisson bracket.




Gauged double Poisson (5)

Definition

P e (T*A)y 2 is gauged Poisson if there exists o € (T*A) such that
{P,P}sn = (Aa); € (T*A)y,3. The corresponding double bracket
[—,—] = p2(P) is then said to be a double gauged Poisson bracket.

Proposition

Assume that P € (T*A)y o is a gauged Poisson element. Then the linear
operation (of degree +1) dp on (T*A)y descends to a square-zero
differential on D 4.

Proof.
One computes Im(d%) C Im(:2). Then, recall D% := coker /£ O




Gauged double Poisson (6)

Proposition

If P € (T*A)» is gauged Poisson, then tr(P) € X2(An)%LY induces a
Poisson bivector on A]C\},LN .

Proof.
{P, P}SN = (Aa)u implies [tr(P),tr(P)]SN = Zi,j(Eji)AN A\ Q. L]

Theorem
There is a morphism of complexes

tr: (DA,dp) — (%(A%LN)adtr(P))’

which descends to a linear map gdPH(A) — PH(A%LN ) in cohomology.

v




To go further: dPVA cohomology

In part 2 of arXiv:2509.21232 with Daniele Valeri (La Sapienza, IT),
we give cohomological constructions for double Poisson vertex algebras

In part 3, we show that the dPA and dPVA cohomologies are related under
the jet and quotient functors (see [Bozec-F-Moreau,'25]).

[ It is time to make calculations for those theories... J



https://arxiv.org/abs/2509.21232

Thank you for listening !

Maxime Fairon
maxime.faironQu-bourgogne.fr e maxime.fairon@Qube.fr
mfairon.perso.math.cnrs.fr/


https://mfairon.perso.math.cnrs.fr/
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